{"title":"从幅度谱图中恢复非griffin - lim型信号","authors":"Ryusei Nakatsu, D. Kitahara, A. Hirabayashi","doi":"10.1109/ICASSP40776.2020.9053576","DOIUrl":null,"url":null,"abstract":"Speech and audio signal processing frequently requires to recover a time-domain signal from the magnitude of a spectrogram. Conventional methods inversely transform the magnitude spectrogram with a phase spectrogram recovered by the Griffin–Lim algorithm or its accelerated versions. The short-time Fourier transform (STFT) perfectly matches this framework, while other useful spectrogram transforms, such as the constant-Q transform (CQT), do not, because their inverses cannot be computed easily. To make the best of such useful spectrogram transforms, we propose an algorithm which recovers the time-domain signal without the inverse spectrogram transforms. We formulate the signal recovery as a nonconvex optimization problem, which is difficult to solve exactly. To approximately solve the problem, we exploit a stochastic convex optimization technique. A well-organized block selection enables us both to avoid local minimums and to achieve fast convergence. Numerical experiments show the effectiveness of the proposed method for both STFT and CQT cases.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"11 3 1","pages":"791-795"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Griffin–Lim Type Signal Recovery from Magnitude Spectrogram\",\"authors\":\"Ryusei Nakatsu, D. Kitahara, A. Hirabayashi\",\"doi\":\"10.1109/ICASSP40776.2020.9053576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech and audio signal processing frequently requires to recover a time-domain signal from the magnitude of a spectrogram. Conventional methods inversely transform the magnitude spectrogram with a phase spectrogram recovered by the Griffin–Lim algorithm or its accelerated versions. The short-time Fourier transform (STFT) perfectly matches this framework, while other useful spectrogram transforms, such as the constant-Q transform (CQT), do not, because their inverses cannot be computed easily. To make the best of such useful spectrogram transforms, we propose an algorithm which recovers the time-domain signal without the inverse spectrogram transforms. We formulate the signal recovery as a nonconvex optimization problem, which is difficult to solve exactly. To approximately solve the problem, we exploit a stochastic convex optimization technique. A well-organized block selection enables us both to avoid local minimums and to achieve fast convergence. Numerical experiments show the effectiveness of the proposed method for both STFT and CQT cases.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"11 3 1\",\"pages\":\"791-795\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Griffin–Lim Type Signal Recovery from Magnitude Spectrogram
Speech and audio signal processing frequently requires to recover a time-domain signal from the magnitude of a spectrogram. Conventional methods inversely transform the magnitude spectrogram with a phase spectrogram recovered by the Griffin–Lim algorithm or its accelerated versions. The short-time Fourier transform (STFT) perfectly matches this framework, while other useful spectrogram transforms, such as the constant-Q transform (CQT), do not, because their inverses cannot be computed easily. To make the best of such useful spectrogram transforms, we propose an algorithm which recovers the time-domain signal without the inverse spectrogram transforms. We formulate the signal recovery as a nonconvex optimization problem, which is difficult to solve exactly. To approximately solve the problem, we exploit a stochastic convex optimization technique. A well-organized block selection enables us both to avoid local minimums and to achieve fast convergence. Numerical experiments show the effectiveness of the proposed method for both STFT and CQT cases.