{"title":"通过粘接剪切层将载荷从有限数量的有限长度的弹性覆盖层传递到弹性条带","authors":"A. V. Kerobyan","doi":"10.46991/pysu:a/2019.53.2.109","DOIUrl":null,"url":null,"abstract":"This article deals with the problem of an elastic infinite strip, which is strengthened along its free boundary by a finite number of finite overlays with different elastic characteristics and small constant thicknesses. The interaction between the strip and the overlays is mediated by adhesive shear layers. The overlays are deformed under the action of horizontal forces. The problem of determination of unknown stresses acting between the strip and overlays are reduced to a system of Fredholm integral equations of the second kind for a finite number of unknown functions defined on different finite intervals. It is shown that in the certain domain of variation of the characteristic parameter of the problem this system of integral equations in Banach space may be solved by the method of successive approximations. Particular cases are discussed and the character and behaviour of unknown shear stresses are investigated.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TRANSFER OF LOADS FROM A FINITE NUMBER OF ELASTIC OVERLAYS WITH FINITE LENGTHS TO AN ELASTIC STRIP THROUGH ADHESIVE SHEAR LAYERS\",\"authors\":\"A. V. Kerobyan\",\"doi\":\"10.46991/pysu:a/2019.53.2.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the problem of an elastic infinite strip, which is strengthened along its free boundary by a finite number of finite overlays with different elastic characteristics and small constant thicknesses. The interaction between the strip and the overlays is mediated by adhesive shear layers. The overlays are deformed under the action of horizontal forces. The problem of determination of unknown stresses acting between the strip and overlays are reduced to a system of Fredholm integral equations of the second kind for a finite number of unknown functions defined on different finite intervals. It is shown that in the certain domain of variation of the characteristic parameter of the problem this system of integral equations in Banach space may be solved by the method of successive approximations. Particular cases are discussed and the character and behaviour of unknown shear stresses are investigated.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2019.53.2.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2019.53.2.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TRANSFER OF LOADS FROM A FINITE NUMBER OF ELASTIC OVERLAYS WITH FINITE LENGTHS TO AN ELASTIC STRIP THROUGH ADHESIVE SHEAR LAYERS
This article deals with the problem of an elastic infinite strip, which is strengthened along its free boundary by a finite number of finite overlays with different elastic characteristics and small constant thicknesses. The interaction between the strip and the overlays is mediated by adhesive shear layers. The overlays are deformed under the action of horizontal forces. The problem of determination of unknown stresses acting between the strip and overlays are reduced to a system of Fredholm integral equations of the second kind for a finite number of unknown functions defined on different finite intervals. It is shown that in the certain domain of variation of the characteristic parameter of the problem this system of integral equations in Banach space may be solved by the method of successive approximations. Particular cases are discussed and the character and behaviour of unknown shear stresses are investigated.