协同MARL的q -学习平均域控制:收敛性和复杂性分析

IF 1.9 Q1 MATHEMATICS, APPLIED
Haotian Gu, Xin Guo, Xiaoli Wei, Renyuan Xu
{"title":"协同MARL的q -学习平均域控制:收敛性和复杂性分析","authors":"Haotian Gu, Xin Guo, Xiaoli Wei, Renyuan Xu","doi":"10.1137/20m1360700","DOIUrl":null,"url":null,"abstract":"Multi-agent reinforcement learning (MARL), despite its popularity and empirical success, suffers from the curse of dimensionality. This paper builds the mathematical framework to approximate cooperative MARL by a mean-field control (MFC) framework, and shows that the approximation error is of $O(\\frac{1}{\\sqrt{N}})$. By establishing appropriate form of the dynamic programming principle for both the value function and the Q function, it proposes a model-free kernel-based Q-learning algorithm (MFC-K-Q), which is shown to be of linear convergence rate, the first of its kind in the MARL literature. It further establishes that the convergence rate and the sample complexity of MFC-K-Q are independent of the number of agents $N$. Empirical studies for the network traffic congestion problem demonstrate that MFC-K-Q outperforms existing MARL algorithms when $N$ is large, for instance when $N>50$.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"20 1","pages":"1168-1196"},"PeriodicalIF":1.9000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Mean-Field Controls with Q-Learning for Cooperative MARL: Convergence and Complexity Analysis\",\"authors\":\"Haotian Gu, Xin Guo, Xiaoli Wei, Renyuan Xu\",\"doi\":\"10.1137/20m1360700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-agent reinforcement learning (MARL), despite its popularity and empirical success, suffers from the curse of dimensionality. This paper builds the mathematical framework to approximate cooperative MARL by a mean-field control (MFC) framework, and shows that the approximation error is of $O(\\\\frac{1}{\\\\sqrt{N}})$. By establishing appropriate form of the dynamic programming principle for both the value function and the Q function, it proposes a model-free kernel-based Q-learning algorithm (MFC-K-Q), which is shown to be of linear convergence rate, the first of its kind in the MARL literature. It further establishes that the convergence rate and the sample complexity of MFC-K-Q are independent of the number of agents $N$. Empirical studies for the network traffic congestion problem demonstrate that MFC-K-Q outperforms existing MARL algorithms when $N$ is large, for instance when $N>50$.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"20 1\",\"pages\":\"1168-1196\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1360700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20m1360700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 37

摘要

多智能体强化学习(MARL)尽管在实践中取得了成功,但也受到了维数的困扰。本文建立了用平均场控制(MFC)框架近似协同MARL的数学框架,并证明了近似误差为$O(\frac{1}{\sqrt{N}})$。通过建立值函数和Q函数的动态规划原理的适当形式,提出了一种基于无模型核的Q-学习算法(MFC-K-Q),该算法具有线性收敛速率,在MARL文献中尚属首次。进一步证明了MFC-K-Q的收敛速度和样本复杂度与agent数量无关$N$。针对网络流量拥塞问题的实证研究表明,当$N$较大时,例如$N>50$时,MFC-K-Q优于现有的MARL算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean-Field Controls with Q-Learning for Cooperative MARL: Convergence and Complexity Analysis
Multi-agent reinforcement learning (MARL), despite its popularity and empirical success, suffers from the curse of dimensionality. This paper builds the mathematical framework to approximate cooperative MARL by a mean-field control (MFC) framework, and shows that the approximation error is of $O(\frac{1}{\sqrt{N}})$. By establishing appropriate form of the dynamic programming principle for both the value function and the Q function, it proposes a model-free kernel-based Q-learning algorithm (MFC-K-Q), which is shown to be of linear convergence rate, the first of its kind in the MARL literature. It further establishes that the convergence rate and the sample complexity of MFC-K-Q are independent of the number of agents $N$. Empirical studies for the network traffic congestion problem demonstrate that MFC-K-Q outperforms existing MARL algorithms when $N$ is large, for instance when $N>50$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信