反积分扩展中分母理想扩散的条件和元素互斥的条件

S. Oda, KEN-ICHI Yoshida
{"title":"反积分扩展中分母理想扩散的条件和元素互斥的条件","authors":"S. Oda, KEN-ICHI Yoshida","doi":"10.5036/MJIU.31.21","DOIUrl":null,"url":null,"abstract":"Notation and Convensions Throughout this paper, we use the following notation unless otherwise specified: Let R be a Noetherian domain (which is commutative and has a unit), let R[X]be a polynomial ring,let. α be an element of an algebraic extension field of the quotient field K of R and let π: R[X]→R[α] be the R-algebra homomorphism sending X to α. Let ψα(X) be the monic minimal polynomial of α over K with deg ψα(X)=d and write ψα(X)=Xd+η1Xd-1+...+ηd. Then ηi ∈ K (1≦i≦d) are uniquely determined by α. Put d=[K(α):K],","PeriodicalId":18362,"journal":{"name":"Mathematical Journal of Ibaraki University","volume":"8 1","pages":"21-27"},"PeriodicalIF":0.0000,"publicationDate":"1999-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Conditions for Denominator Ideals to Diffuse and Conditions for Elements to Be Exclusive in Anti-Integral Extensions\",\"authors\":\"S. Oda, KEN-ICHI Yoshida\",\"doi\":\"10.5036/MJIU.31.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Notation and Convensions Throughout this paper, we use the following notation unless otherwise specified: Let R be a Noetherian domain (which is commutative and has a unit), let R[X]be a polynomial ring,let. α be an element of an algebraic extension field of the quotient field K of R and let π: R[X]→R[α] be the R-algebra homomorphism sending X to α. Let ψα(X) be the monic minimal polynomial of α over K with deg ψα(X)=d and write ψα(X)=Xd+η1Xd-1+...+ηd. Then ηi ∈ K (1≦i≦d) are uniquely determined by α. Put d=[K(α):K],\",\"PeriodicalId\":18362,\"journal\":{\"name\":\"Mathematical Journal of Ibaraki University\",\"volume\":\"8 1\",\"pages\":\"21-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Journal of Ibaraki University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5036/MJIU.31.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Journal of Ibaraki University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/MJIU.31.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,除非特别说明,否则我们使用以下符号:设R是一个Noetherian定义域(该定义域是可交换的且有一个单位),设R[X]是一个多项式环,设。α是R的商域K的代数扩展域的一个元素,设π: R[X]→R[α]是使X到α的R-代数同态。设ψα(X)是α / K的最小多项式,且deg ψα(X)=d,并写成ψα(X)=Xd+η1Xd-1+…+ηd。则ηi∈K(1≦i≦d)唯一由α决定。把d = (K(α):K),
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Conditions for Denominator Ideals to Diffuse and Conditions for Elements to Be Exclusive in Anti-Integral Extensions
Notation and Convensions Throughout this paper, we use the following notation unless otherwise specified: Let R be a Noetherian domain (which is commutative and has a unit), let R[X]be a polynomial ring,let. α be an element of an algebraic extension field of the quotient field K of R and let π: R[X]→R[α] be the R-algebra homomorphism sending X to α. Let ψα(X) be the monic minimal polynomial of α over K with deg ψα(X)=d and write ψα(X)=Xd+η1Xd-1+...+ηd. Then ηi ∈ K (1≦i≦d) are uniquely determined by α. Put d=[K(α):K],
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信