{"title":"混合漂移通量方程的数值稳定性","authors":"J. Doster, J. Kauffman","doi":"10.13182/NSE99-A2051","DOIUrl":null,"url":null,"abstract":"Drift flux models are commonly used to describe two-phase flow systems when explicit representation of the relative phase motion is not required. In these models, relative phase velocity is typically described by flow-regime-dependent, semi-empirical models. Although they are a somewhat simple description of the two-phase conditions that might be expected in nuclear power systems, drift flux models can still be expected to give reasonable results in a significant range of operating conditions and can be useful in incorporating thermal-hydraulic feedback into steady-state and transient neutronics calculations. In this paper, we examine the numerical stability associated with the finite difference solution of the mixture drift flux equations. We assume a standard semi-implicit discretization on a staggered spatial mesh, where the drift flux terms are evaluated purely explicitly.","PeriodicalId":23138,"journal":{"name":"Transactions of the American Nuclear Society","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"1997-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical stability of the mixture drift flux equations\",\"authors\":\"J. Doster, J. Kauffman\",\"doi\":\"10.13182/NSE99-A2051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drift flux models are commonly used to describe two-phase flow systems when explicit representation of the relative phase motion is not required. In these models, relative phase velocity is typically described by flow-regime-dependent, semi-empirical models. Although they are a somewhat simple description of the two-phase conditions that might be expected in nuclear power systems, drift flux models can still be expected to give reasonable results in a significant range of operating conditions and can be useful in incorporating thermal-hydraulic feedback into steady-state and transient neutronics calculations. In this paper, we examine the numerical stability associated with the finite difference solution of the mixture drift flux equations. We assume a standard semi-implicit discretization on a staggered spatial mesh, where the drift flux terms are evaluated purely explicitly.\",\"PeriodicalId\":23138,\"journal\":{\"name\":\"Transactions of the American Nuclear Society\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Nuclear Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13182/NSE99-A2051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Nuclear Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13182/NSE99-A2051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical stability of the mixture drift flux equations
Drift flux models are commonly used to describe two-phase flow systems when explicit representation of the relative phase motion is not required. In these models, relative phase velocity is typically described by flow-regime-dependent, semi-empirical models. Although they are a somewhat simple description of the two-phase conditions that might be expected in nuclear power systems, drift flux models can still be expected to give reasonable results in a significant range of operating conditions and can be useful in incorporating thermal-hydraulic feedback into steady-state and transient neutronics calculations. In this paper, we examine the numerical stability associated with the finite difference solution of the mixture drift flux equations. We assume a standard semi-implicit discretization on a staggered spatial mesh, where the drift flux terms are evaluated purely explicitly.