{"title":"P2B-10二次谐波像差校正","authors":"H. Kaupang, T. Varslot, S. Måsøy","doi":"10.1109/ULTSYM.2007.387","DOIUrl":null,"url":null,"abstract":"A simulation study is performed to present results concerning 3D aberration correction for harmonic imaging. Two different correction schemes (a pure time-delay correction and a time-delay and amplitude correction) are employed along with estimation based on either the received first- or second-harmonic frequency. An aberrating body wall is implemented as a 20 mm delay-screen body wall using eight screens, and is tuned to match human abdominal wall characteristics. The transmit pressure of the first harmonic is set to not succeed a mechanical index of 1.1 for the uncorrected case and a pure time-delay correction. Using a time-delay and amplitude correction, the total acoustic energy transmitted is equal to that of the uncorrected case. The total amount of generated second-harmonic energy increases with approximately 1 dB for a pure time-delay correction and about 2 dB for a time-delay and amplitude correction, both estimated at the received first-harmonic frequency. The general side-lobe level of the first- and second-harmonic focal point beam profile averaged over circles around the transducer axis is lowered with 2-10 dB for both correction schemes relative to the uncorrected case.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"69 1","pages":"1537-1540"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"P2B-10 Second-Harmonic Aberration Correction\",\"authors\":\"H. Kaupang, T. Varslot, S. Måsøy\",\"doi\":\"10.1109/ULTSYM.2007.387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simulation study is performed to present results concerning 3D aberration correction for harmonic imaging. Two different correction schemes (a pure time-delay correction and a time-delay and amplitude correction) are employed along with estimation based on either the received first- or second-harmonic frequency. An aberrating body wall is implemented as a 20 mm delay-screen body wall using eight screens, and is tuned to match human abdominal wall characteristics. The transmit pressure of the first harmonic is set to not succeed a mechanical index of 1.1 for the uncorrected case and a pure time-delay correction. Using a time-delay and amplitude correction, the total acoustic energy transmitted is equal to that of the uncorrected case. The total amount of generated second-harmonic energy increases with approximately 1 dB for a pure time-delay correction and about 2 dB for a time-delay and amplitude correction, both estimated at the received first-harmonic frequency. The general side-lobe level of the first- and second-harmonic focal point beam profile averaged over circles around the transducer axis is lowered with 2-10 dB for both correction schemes relative to the uncorrected case.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"69 1\",\"pages\":\"1537-1540\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simulation study is performed to present results concerning 3D aberration correction for harmonic imaging. Two different correction schemes (a pure time-delay correction and a time-delay and amplitude correction) are employed along with estimation based on either the received first- or second-harmonic frequency. An aberrating body wall is implemented as a 20 mm delay-screen body wall using eight screens, and is tuned to match human abdominal wall characteristics. The transmit pressure of the first harmonic is set to not succeed a mechanical index of 1.1 for the uncorrected case and a pure time-delay correction. Using a time-delay and amplitude correction, the total acoustic energy transmitted is equal to that of the uncorrected case. The total amount of generated second-harmonic energy increases with approximately 1 dB for a pure time-delay correction and about 2 dB for a time-delay and amplitude correction, both estimated at the received first-harmonic frequency. The general side-lobe level of the first- and second-harmonic focal point beam profile averaged over circles around the transducer axis is lowered with 2-10 dB for both correction schemes relative to the uncorrected case.