在\(D(4)\) -对\(\{a, ka\}\)与 \(k\in \{2,3,6\}\)

Pub Date : 2023-06-30 DOI:10.3336/gm.58.1.03
K. N. Adédji, Marija Bliznac Trebješanin, A. Filipin, A. Togbé
{"title":"在\\(D(4)\\) -对\\(\\{a, ka\\}\\)与 \\(k\\in \\{2,3,6\\}\\)","authors":"K. N. Adédji, Marija Bliznac Trebješanin, A. Filipin, A. Togbé","doi":"10.3336/gm.58.1.03","DOIUrl":null,"url":null,"abstract":"Let \\(a\\) and \\(b=ka\\) be positive integers with \\(k\\in \\{2, 3, 6\\},\\) such that \\(ab+4\\) is a perfect square. In this paper, we study the extensibility of the \\(D(4)\\)-pairs \\(\\{a, ka\\}.\\) More precisely, we prove that by considering families of positive integers \\(c\\) depending on \\(a,\\) if \\(\\{a, b, c, d\\}\\) is a set of positive integers which has the property that the product of any two of its elements increased by \\(4\\) is a perfect square, then \\(d\\) is given by\n\n d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4))).\n\nAs a corollary, we prove that any \\(D(4)\\)-quadruple tht contains the pair \\(\\{a, ka\\}\\) is regular.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the \\\\(D(4)\\\\)-pairs \\\\(\\\\{a, ka\\\\}\\\\) with \\\\(k\\\\in \\\\{2,3,6\\\\}\\\\)\",\"authors\":\"K. N. Adédji, Marija Bliznac Trebješanin, A. Filipin, A. Togbé\",\"doi\":\"10.3336/gm.58.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(a\\\\) and \\\\(b=ka\\\\) be positive integers with \\\\(k\\\\in \\\\{2, 3, 6\\\\},\\\\) such that \\\\(ab+4\\\\) is a perfect square. In this paper, we study the extensibility of the \\\\(D(4)\\\\)-pairs \\\\(\\\\{a, ka\\\\}.\\\\) More precisely, we prove that by considering families of positive integers \\\\(c\\\\) depending on \\\\(a,\\\\) if \\\\(\\\\{a, b, c, d\\\\}\\\\) is a set of positive integers which has the property that the product of any two of its elements increased by \\\\(4\\\\) is a perfect square, then \\\\(d\\\\) is given by\\n\\n d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4))).\\n\\nAs a corollary, we prove that any \\\\(D(4)\\\\)-quadruple tht contains the pair \\\\(\\\\{a, ka\\\\}\\\\) is regular.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(a\) 和 \(b=ka\) 是正整数 \(k\in \{2, 3, 6\},\) 这样 \(ab+4\) 是一个完全平方。本文主要研究了 \(D(4)\)-pairs \(\{a, ka\}.\) 更准确地说,我们通过考虑正整数族来证明 \(c\) 取决于 \(a,\) 如果 \(\{a, b, c, d\}\) 一组正整数是否具有任意两个元素的乘积增加的性质 \(4\) 是完全平方数吗 \(d\) 由d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4)))给出。作为推论,我们证明任何 \(D(4)\)-四倍THT包含对 \(\{a, ka\}\) 是正常的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the \(D(4)\)-pairs \(\{a, ka\}\) with \(k\in \{2,3,6\}\)
Let \(a\) and \(b=ka\) be positive integers with \(k\in \{2, 3, 6\},\) such that \(ab+4\) is a perfect square. In this paper, we study the extensibility of the \(D(4)\)-pairs \(\{a, ka\}.\) More precisely, we prove that by considering families of positive integers \(c\) depending on \(a,\) if \(\{a, b, c, d\}\) is a set of positive integers which has the property that the product of any two of its elements increased by \(4\) is a perfect square, then \(d\) is given by d=a+b+c+1/2(abc±√((ab+4)(ac+4)(bc+4))). As a corollary, we prove that any \(D(4)\)-quadruple tht contains the pair \(\{a, ka\}\) is regular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信