具有部分分布信息的无监督多视图学习

Shashini De Silva, Jinsub Kim, R. Raich
{"title":"具有部分分布信息的无监督多视图学习","authors":"Shashini De Silva, Jinsub Kim, R. Raich","doi":"10.1109/MLSP.2017.8168138","DOIUrl":null,"url":null,"abstract":"We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised multiview learning with partial distribution information\",\"authors\":\"Shashini De Silva, Jinsub Kim, R. Raich\",\"doi\":\"10.1109/MLSP.2017.8168138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一种训练数据收集机制,其中,从已知的类条件分布中获取额外的特征,而不是用类标签注释每个训练实例。将真标签作为潜在变量,提出了一种基于这些无标签训练数据的最大似然方法来训练分类器。此外,考虑了相关训练实例的情况,其中随后收集的训练实例的潜在标签变量形成一阶马尔可夫链。提出了凸优化方法和期望最大化算法来训练分类器。通过虹膜数据和MNIST手写数字数据的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised multiview learning with partial distribution information
We consider a training data collection mechanism wherein, instead of annotating each training instance with a class label, additional features drawn from a known class-conditional distribution are acquired concurrently. Considering true labels as latent variables, a maximum likelihood approach is proposed to train a classifier based on these unlabeled training data. Furthermore, the case of correlated training instances is considered, wherein latent label variables for subsequently collected training instances form a first-order Markov chain. A convex optimization approach and expectation-maximization algorithms are presented to train classifiers. The efficacy of the proposed approach is validated using the experiments with the iris data and the MNIST handwritten digit data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信