双曲型3流形的体积刚性和特征变化的理想点

IF 1.2 2区 数学 Q1 MATHEMATICS
S. Francaviglia, A. Savini
{"title":"双曲型3流形的体积刚性和特征变化的理想点","authors":"S. Francaviglia, A. Savini","doi":"10.2422/2036-2145.201709_010","DOIUrl":null,"url":null,"abstract":"Given the fundamental group $\\Gamma$ of a finite-volume complete hyperbolic $3$-manifold $M$, it is possible to associate to any representation $\\rho:\\Gamma \\rightarrow \\text{Isom}(\\mathbb{H}^3)$ a numerical invariant called volume. This invariant is bounded by the hyperbolic volume of $M$ and satisfies a rigidity condition: if the volume of $\\rho$ is maximal, then $\\rho$ must be conjugated to the holonomy of the hyperbolic structure of $M$. This paper generalizes this rigidity result by showing that if a sequence of representations of $\\Gamma$ into $\\text{Isom}(\\mathbb{H}^3)$ satisfies $\\lim_{n \\to \\infty} \\text{Vol}(\\rho_n) = \\text{Vol}(M)$, then there must exist a sequence of elements $g_n \\in \\text{Isom}(\\mathbb{H}^3)$ such that the representations $g_n \\circ \\rho_n \\circ g_n^{-1}$ converge to the holonomy of $M$. In particular if the sequence $\\rho_n$ converges to an ideal point of the character variety, then the sequence of volumes must stay away from the maximum. We conclude by generalizing the result to the case of $k$-manifolds and representations in $\\text{Isom}(\\mathbb H^m)$, where $m\\geq k$.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"13 2 1","pages":"1"},"PeriodicalIF":1.2000,"publicationDate":"2017-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Volume rigidity ad ideal points of the character variety of hyperbolic 3-manifolds\",\"authors\":\"S. Francaviglia, A. Savini\",\"doi\":\"10.2422/2036-2145.201709_010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the fundamental group $\\\\Gamma$ of a finite-volume complete hyperbolic $3$-manifold $M$, it is possible to associate to any representation $\\\\rho:\\\\Gamma \\\\rightarrow \\\\text{Isom}(\\\\mathbb{H}^3)$ a numerical invariant called volume. This invariant is bounded by the hyperbolic volume of $M$ and satisfies a rigidity condition: if the volume of $\\\\rho$ is maximal, then $\\\\rho$ must be conjugated to the holonomy of the hyperbolic structure of $M$. This paper generalizes this rigidity result by showing that if a sequence of representations of $\\\\Gamma$ into $\\\\text{Isom}(\\\\mathbb{H}^3)$ satisfies $\\\\lim_{n \\\\to \\\\infty} \\\\text{Vol}(\\\\rho_n) = \\\\text{Vol}(M)$, then there must exist a sequence of elements $g_n \\\\in \\\\text{Isom}(\\\\mathbb{H}^3)$ such that the representations $g_n \\\\circ \\\\rho_n \\\\circ g_n^{-1}$ converge to the holonomy of $M$. In particular if the sequence $\\\\rho_n$ converges to an ideal point of the character variety, then the sequence of volumes must stay away from the maximum. We conclude by generalizing the result to the case of $k$-manifolds and representations in $\\\\text{Isom}(\\\\mathbb H^m)$, where $m\\\\geq k$.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"13 2 1\",\"pages\":\"1\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201709_010\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201709_010","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

给定有限体积完全双曲$3$流形$M$的基本群$\Gamma$,可以将称为体积的数值不变量与任何表示$\rho:\Gamma \rightarrow \text{Isom}(\mathbb{H}^3)$联系起来。该不变量以$M$的双曲体积为界,并满足刚性条件:如果$\rho$的体积最大,则$\rho$必须共轭于$M$的双曲结构的完整性。本文推广了这一刚性结果,证明了如果$\Gamma$的一个表示序列$\text{Isom}(\mathbb{H}^3)$满足$\lim_{n \to \infty} \text{Vol}(\rho_n) = \text{Vol}(M)$,则必然存在一个元素序列$g_n \in \text{Isom}(\mathbb{H}^3)$,使得表示$g_n \circ \rho_n \circ g_n^{-1}$收敛于$M$的完整性。特别是,如果序列$\rho_n$收敛到字符变化的理想点,那么体积序列必须远离最大值。我们将结果推广到$k$ -流形和$\text{Isom}(\mathbb H^m)$中的表示的情况,其中$m\geq k$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volume rigidity ad ideal points of the character variety of hyperbolic 3-manifolds
Given the fundamental group $\Gamma$ of a finite-volume complete hyperbolic $3$-manifold $M$, it is possible to associate to any representation $\rho:\Gamma \rightarrow \text{Isom}(\mathbb{H}^3)$ a numerical invariant called volume. This invariant is bounded by the hyperbolic volume of $M$ and satisfies a rigidity condition: if the volume of $\rho$ is maximal, then $\rho$ must be conjugated to the holonomy of the hyperbolic structure of $M$. This paper generalizes this rigidity result by showing that if a sequence of representations of $\Gamma$ into $\text{Isom}(\mathbb{H}^3)$ satisfies $\lim_{n \to \infty} \text{Vol}(\rho_n) = \text{Vol}(M)$, then there must exist a sequence of elements $g_n \in \text{Isom}(\mathbb{H}^3)$ such that the representations $g_n \circ \rho_n \circ g_n^{-1}$ converge to the holonomy of $M$. In particular if the sequence $\rho_n$ converges to an ideal point of the character variety, then the sequence of volumes must stay away from the maximum. We conclude by generalizing the result to the case of $k$-manifolds and representations in $\text{Isom}(\mathbb H^m)$, where $m\geq k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信