Omar Fawzi, Antoine Grospellier, Anthony Leverrier
{"title":"量子扩展码随机错误的有效解码","authors":"Omar Fawzi, Antoine Grospellier, Anthony Leverrier","doi":"10.1145/3188745.3188886","DOIUrl":null,"url":null,"abstract":"We show that quantum expander codes, a constant-rate family of quantum low-density parity check (LDPC) codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Zémor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottesman’s construction of fault tolerant schemes with constant space overhead. In order to obtain this result, we study a notion of α-percolation: for a random subset E of vertices of a given graph, we consider the size of the largest connected α-subset of E, where X is an α-subset of E if |X ∩ E| ≥ α |X|.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Efficient decoding of random errors for quantum expander codes\",\"authors\":\"Omar Fawzi, Antoine Grospellier, Anthony Leverrier\",\"doi\":\"10.1145/3188745.3188886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that quantum expander codes, a constant-rate family of quantum low-density parity check (LDPC) codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Zémor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottesman’s construction of fault tolerant schemes with constant space overhead. In order to obtain this result, we study a notion of α-percolation: for a random subset E of vertices of a given graph, we consider the size of the largest connected α-subset of E, where X is an α-subset of E if |X ∩ E| ≥ α |X|.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient decoding of random errors for quantum expander codes
We show that quantum expander codes, a constant-rate family of quantum low-density parity check (LDPC) codes, with the quasi-linear time decoding algorithm of Leverrier, Tillich and Zémor can correct a constant fraction of random errors with very high probability. This is the first construction of a constant-rate quantum LDPC code with an efficient decoding algorithm that can correct a linear number of random errors with a negligible failure probability. Finding codes with these properties is also motivated by Gottesman’s construction of fault tolerant schemes with constant space overhead. In order to obtain this result, we study a notion of α-percolation: for a random subset E of vertices of a given graph, we consider the size of the largest connected α-subset of E, where X is an α-subset of E if |X ∩ E| ≥ α |X|.