基于神经网络的变结构多模型减少模式集跳变延迟

D. Choi, B. Ahn, Hanseok Ko
{"title":"基于神经网络的变结构多模型减少模式集跳变延迟","authors":"D. Choi, B. Ahn, Hanseok Ko","doi":"10.1109/SSP.2001.955242","DOIUrl":null,"url":null,"abstract":"Variable structure multiple model (VSMM) is one of the most powerful algorithms for effectively tracking a single maneuvering target. Although VSMM is developed specifically to improve the interactive multiple model (MM) method focused to reducing computational cost and improving tracking performance, it presents an inherent limitation in the form of the presence of mode set jump delay (MJD). MJD as an undesirable phenomenon in VSMM is described and analyzed. In order to eliminate the MJD, a neural network based VSMM that automatically selects the optimal mode set as achieved by supervised training is proposed. Through representative simulations we show the proposed algorithm outperforming over the conventional digraph switching VSMM in terms of tracking error.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural net based variable structure multiple model reducing mode set jump delay\",\"authors\":\"D. Choi, B. Ahn, Hanseok Ko\",\"doi\":\"10.1109/SSP.2001.955242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variable structure multiple model (VSMM) is one of the most powerful algorithms for effectively tracking a single maneuvering target. Although VSMM is developed specifically to improve the interactive multiple model (MM) method focused to reducing computational cost and improving tracking performance, it presents an inherent limitation in the form of the presence of mode set jump delay (MJD). MJD as an undesirable phenomenon in VSMM is described and analyzed. In order to eliminate the MJD, a neural network based VSMM that automatically selects the optimal mode set as achieved by supervised training is proposed. Through representative simulations we show the proposed algorithm outperforming over the conventional digraph switching VSMM in terms of tracking error.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

变结构多模型(VSMM)是有效跟踪单个机动目标最强大的算法之一。虽然VSMM是专门为改进以降低计算成本和提高跟踪性能为重点的交互式多模型(MM)方法而开发的,但它存在固有的局限性,即模式集跳变延迟(MJD)的存在。对VSMM中的MJD现象进行了描述和分析。为了消除MJD,提出了一种基于神经网络的VSMM算法,该算法根据监督训练的结果自动选择最优模式集。通过典型的仿真,我们证明了该算法在跟踪误差方面优于传统的有向图切换VSMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural net based variable structure multiple model reducing mode set jump delay
Variable structure multiple model (VSMM) is one of the most powerful algorithms for effectively tracking a single maneuvering target. Although VSMM is developed specifically to improve the interactive multiple model (MM) method focused to reducing computational cost and improving tracking performance, it presents an inherent limitation in the form of the presence of mode set jump delay (MJD). MJD as an undesirable phenomenon in VSMM is described and analyzed. In order to eliminate the MJD, a neural network based VSMM that automatically selects the optimal mode set as achieved by supervised training is proposed. Through representative simulations we show the proposed algorithm outperforming over the conventional digraph switching VSMM in terms of tracking error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信