具有重叠代的关键高尔顿-沃森过程

Q3 Mathematics
S. Sagitov
{"title":"具有重叠代的关键高尔顿-沃森过程","authors":"S. Sagitov","doi":"10.1515/eqc-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract A properly scaled critical Galton–Watson process converges to a continuous state critical branching process ξ ⁢ ( ⋅ ) \\xi(\\,{\\cdot}\\,) as the number of initial individuals tends to infinity. We extend this classical result by allowing for overlapping generations and considering a wide class of population counts. The main result of the paper establishes a convergence of the finite-dimensional distributions for a scaled vector of multiple population counts. The set of the limiting distributions is conveniently represented in terms of integrals ( ∫ 0 y ξ ⁢ ( y - u ) ⁢ d u γ \\int_{0}^{y}\\xi(y-u)\\,du^{\\gamma} , y ≥ 0 y\\geq 0 ) with a pertinent γ ≥ 0 \\gamma\\geq 0 .","PeriodicalId":37499,"journal":{"name":"Stochastics and Quality Control","volume":"30 1","pages":"87 - 110"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical Galton–Watson Processes with Overlapping Generations\",\"authors\":\"S. Sagitov\",\"doi\":\"10.1515/eqc-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A properly scaled critical Galton–Watson process converges to a continuous state critical branching process ξ ⁢ ( ⋅ ) \\\\xi(\\\\,{\\\\cdot}\\\\,) as the number of initial individuals tends to infinity. We extend this classical result by allowing for overlapping generations and considering a wide class of population counts. The main result of the paper establishes a convergence of the finite-dimensional distributions for a scaled vector of multiple population counts. The set of the limiting distributions is conveniently represented in terms of integrals ( ∫ 0 y ξ ⁢ ( y - u ) ⁢ d u γ \\\\int_{0}^{y}\\\\xi(y-u)\\\\,du^{\\\\gamma} , y ≥ 0 y\\\\geq 0 ) with a pertinent γ ≥ 0 \\\\gamma\\\\geq 0 .\",\"PeriodicalId\":37499,\"journal\":{\"name\":\"Stochastics and Quality Control\",\"volume\":\"30 1\",\"pages\":\"87 - 110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Quality Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eqc-2021-0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Quality Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eqc-2021-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

当初始个体数量趋于无穷时,适当缩放的临界高尔顿-沃森过程收敛为连续状态临界分支过程ξ∞(⋅)\xi (\, {\cdot} \,)。我们扩展了这个经典的结果,允许重叠代和考虑一个广泛的人口计数类。本文的主要结果建立了多个种群数量的缩放向量的有限维分布的收敛性。极限分布的集合可以方便地用积分(∫0 y ξ∞(y-u)∑u γ \int _0{^}y {}\xi (y-u)\,du^ {\gamma}, y≥0 y \geq 0)表示,其中相关的γ≥0 \gamma\geq 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical Galton–Watson Processes with Overlapping Generations
Abstract A properly scaled critical Galton–Watson process converges to a continuous state critical branching process ξ ⁢ ( ⋅ ) \xi(\,{\cdot}\,) as the number of initial individuals tends to infinity. We extend this classical result by allowing for overlapping generations and considering a wide class of population counts. The main result of the paper establishes a convergence of the finite-dimensional distributions for a scaled vector of multiple population counts. The set of the limiting distributions is conveniently represented in terms of integrals ( ∫ 0 y ξ ⁢ ( y - u ) ⁢ d u γ \int_{0}^{y}\xi(y-u)\,du^{\gamma} , y ≥ 0 y\geq 0 ) with a pertinent γ ≥ 0 \gamma\geq 0 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Quality Control
Stochastics and Quality Control Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信