基于卷积神经网络的感性属性模糊评价

Jiang-Shu Wei, Kai Zhang, Wu Zhao, Xin Guo
{"title":"基于卷积神经网络的感性属性模糊评价","authors":"Jiang-Shu Wei, Kai Zhang, Wu Zhao, Xin Guo","doi":"10.1115/detc2021-69567","DOIUrl":null,"url":null,"abstract":"\n The emotional needs for products have increased significantly with the recent improvements in living standards. Attribute evaluation forms the core of Kansei engineering in emotion-oriented products, and is practically quite subjective in nature. Essentially, attribute evaluation is a fuzzy classification task, whose quantitative results change slightly with statistical time and statistical objects, making it difficult to accurately describe using standard mathematical models. In this paper, we propose a novel deep-learning-assisted fuzzy attribute-evaluation (DLFAE) method, which could generate quantitative evaluation results. In comparison to existing methods, the proposed method combines subjective evaluation with convolutional neural networks, which facilitates the generation of quantitative evaluation results. Additionally, this strategy has better transferability for different situations, increasing its versatility and applicability. This, in turn, reduces the computational burden of evaluation and improves operational efficiency.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Evaluation of Kansei Attributes Using Convolutional Neural Networks\",\"authors\":\"Jiang-Shu Wei, Kai Zhang, Wu Zhao, Xin Guo\",\"doi\":\"10.1115/detc2021-69567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The emotional needs for products have increased significantly with the recent improvements in living standards. Attribute evaluation forms the core of Kansei engineering in emotion-oriented products, and is practically quite subjective in nature. Essentially, attribute evaluation is a fuzzy classification task, whose quantitative results change slightly with statistical time and statistical objects, making it difficult to accurately describe using standard mathematical models. In this paper, we propose a novel deep-learning-assisted fuzzy attribute-evaluation (DLFAE) method, which could generate quantitative evaluation results. In comparison to existing methods, the proposed method combines subjective evaluation with convolutional neural networks, which facilitates the generation of quantitative evaluation results. Additionally, this strategy has better transferability for different situations, increasing its versatility and applicability. This, in turn, reduces the computational burden of evaluation and improves operational efficiency.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-69567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-69567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着近年来生活水平的提高,对产品的情感需求显著增加。属性评价是感性产品感性工程的核心,具有很强的主观性。属性评价本质上是一种模糊分类任务,其定量结果随统计时间和统计对象的变化不大,难以用标准数学模型进行准确描述。本文提出了一种新的深度学习辅助模糊属性评价(DLFAE)方法,该方法可以产生定量的评价结果。与现有方法相比,该方法将主观评价与卷积神经网络相结合,便于定量评价结果的生成。此外,该策略在不同情况下具有更好的可移植性,增加了其通用性和适用性。这反过来又减少了评估的计算负担,提高了操作效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Evaluation of Kansei Attributes Using Convolutional Neural Networks
The emotional needs for products have increased significantly with the recent improvements in living standards. Attribute evaluation forms the core of Kansei engineering in emotion-oriented products, and is practically quite subjective in nature. Essentially, attribute evaluation is a fuzzy classification task, whose quantitative results change slightly with statistical time and statistical objects, making it difficult to accurately describe using standard mathematical models. In this paper, we propose a novel deep-learning-assisted fuzzy attribute-evaluation (DLFAE) method, which could generate quantitative evaluation results. In comparison to existing methods, the proposed method combines subjective evaluation with convolutional neural networks, which facilitates the generation of quantitative evaluation results. Additionally, this strategy has better transferability for different situations, increasing its versatility and applicability. This, in turn, reduces the computational burden of evaluation and improves operational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信