序列隐式公式的耦合强度准则

J. Franc, O. Møyner, H. Tchelepi
{"title":"序列隐式公式的耦合强度准则","authors":"J. Franc, O. Møyner, H. Tchelepi","doi":"10.2118/203909-ms","DOIUrl":null,"url":null,"abstract":"Sequential Fully Implicit (SFI) schemes have been proposed as an alternative to the Fully Implicit Method (FIM). A significant advantage of SFI is that one can employ scalable strategies to the flow and transport problems. However, the primary disadvantage of using SFI compared with FIM is the fact that the splitting errors induced by the decoupling operator, which separates the pressure from the saturation(s), can lead to serious convergence difficulties of the overall nonlinear problem. Thus, it is important to quantify the coupling strength in an adaptive manner in both space and time. We present criteria that localize the computational cells where the pressure and saturation solutions are tightly coupled. The approach is using terms in the FIM Jacobian matrix, we quantify the sensitivity of the mass and volume-balance equations to changes in the pressure and the saturations. We identify three criteria that provide a measure of the coupling strength across the equations and variables. The standard CFL stability criteria, which are based entirely on the saturation equations, are a subset of the new criteria. Here, the pressure equation is solved using Algebraic MultiGrid (AMG), or a multiscale solver, such as the Multiscale Restricted-Smooth Basis (MsRSB) approach. The transport equations are then solved using a fixed total-velocity. These ‘coupling strength’ criteria are used to identify the cells where the pressure-saturation coupling is strong. The applicability of the derived coupling-strength criteria is tested using several test cases. The first test is using a gravitational immiscible dead-oil lock-exchange under a unit mobility ratio and large differences in density. For this case, the SFI algorithm fails to converge to the fully coupled solution due to the large splitting errors. Introducing a fully coupled solution stage on the local subdomains as an additional correction step restores nonlinear convergence. Detailed analysis of the ‘coupling strength’ criteria indicates that the criteria related to the sensitivity of the mass balance to changes in the pressure and the sensitivity of the volume balance to changes in the saturations are the most important ones to satisfy. Other test cases include an alternate gas-water-gas injection in a top layer of the SPE 10 test case and an injection-production scenario in a three-dimensional reservoir with layered lognormally distributed permeability. We propose novel criteria to estimate the strength of coupling between pressure and saturation. These CFL-like numbers are used to identify the cells that require fully implicit treatment in the nonlinear solution strategy. These criteria can also be used to improve the nonlinear convergence rates of Adaptive Implicit Methods (AIM).","PeriodicalId":11146,"journal":{"name":"Day 1 Tue, October 26, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coupling-Strength Criteria for Sequential Implicit Formulations\",\"authors\":\"J. Franc, O. Møyner, H. Tchelepi\",\"doi\":\"10.2118/203909-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential Fully Implicit (SFI) schemes have been proposed as an alternative to the Fully Implicit Method (FIM). A significant advantage of SFI is that one can employ scalable strategies to the flow and transport problems. However, the primary disadvantage of using SFI compared with FIM is the fact that the splitting errors induced by the decoupling operator, which separates the pressure from the saturation(s), can lead to serious convergence difficulties of the overall nonlinear problem. Thus, it is important to quantify the coupling strength in an adaptive manner in both space and time. We present criteria that localize the computational cells where the pressure and saturation solutions are tightly coupled. The approach is using terms in the FIM Jacobian matrix, we quantify the sensitivity of the mass and volume-balance equations to changes in the pressure and the saturations. We identify three criteria that provide a measure of the coupling strength across the equations and variables. The standard CFL stability criteria, which are based entirely on the saturation equations, are a subset of the new criteria. Here, the pressure equation is solved using Algebraic MultiGrid (AMG), or a multiscale solver, such as the Multiscale Restricted-Smooth Basis (MsRSB) approach. The transport equations are then solved using a fixed total-velocity. These ‘coupling strength’ criteria are used to identify the cells where the pressure-saturation coupling is strong. The applicability of the derived coupling-strength criteria is tested using several test cases. The first test is using a gravitational immiscible dead-oil lock-exchange under a unit mobility ratio and large differences in density. For this case, the SFI algorithm fails to converge to the fully coupled solution due to the large splitting errors. Introducing a fully coupled solution stage on the local subdomains as an additional correction step restores nonlinear convergence. Detailed analysis of the ‘coupling strength’ criteria indicates that the criteria related to the sensitivity of the mass balance to changes in the pressure and the sensitivity of the volume balance to changes in the saturations are the most important ones to satisfy. Other test cases include an alternate gas-water-gas injection in a top layer of the SPE 10 test case and an injection-production scenario in a three-dimensional reservoir with layered lognormally distributed permeability. We propose novel criteria to estimate the strength of coupling between pressure and saturation. These CFL-like numbers are used to identify the cells that require fully implicit treatment in the nonlinear solution strategy. These criteria can also be used to improve the nonlinear convergence rates of Adaptive Implicit Methods (AIM).\",\"PeriodicalId\":11146,\"journal\":{\"name\":\"Day 1 Tue, October 26, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Tue, October 26, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/203909-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, October 26, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/203909-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

顺序全隐式(SFI)方案被提出作为全隐式方法(FIM)的替代方案。SFI的一个显著优势是,人们可以采用可扩展的策略来解决流和传输问题。然而,与FIM相比,使用SFI的主要缺点是解耦算子(将压力与饱和度分离)引起的分裂误差会导致整个非线性问题的严重收敛困难。因此,以自适应的方式在空间和时间上量化耦合强度是很重要的。我们提出了定位计算单元的标准,其中压力和饱和度解是紧密耦合的。该方法使用FIM雅可比矩阵中的项,量化了质量和体积平衡方程对压力和饱和度变化的敏感性。我们确定了三个标准,这些标准提供了跨方程和变量的耦合强度的度量。标准CFL稳定性准则完全基于饱和方程,是新准则的一个子集。在这里,压力方程是使用代数多网格(AMG)或多尺度求解器(如多尺度限制光滑基(MsRSB)方法)求解的。然后用固定的总速度求解输运方程。这些“耦合强度”标准用于识别压力-饱和耦合较强的单元。通过几个试验案例验证了推导的耦合强度准则的适用性。第一个测试是在单位迁移率和较大密度差下使用重力不混相死油锁交换。在这种情况下,由于分割误差较大,SFI算法无法收敛到全耦合解。在局部子域上引入全耦合解阶段作为附加校正步骤,恢复了非线性收敛性。对“耦合强度”准则的详细分析表明,质量天平对压力变化的敏感性和体积天平对饱和度变化的敏感性是最需要满足的准则。其他测试用例包括在SPE 10测试用例的顶层进行气-水-气交替注入,以及在具有层状对数正态分布渗透率的三维储层中进行注采场景。我们提出了新的准则来估计压力和饱和度之间的耦合强度。这些类似节能灯的数字用于识别在非线性解决策略中需要完全隐式处理的细胞。这些准则也可用于提高自适应隐式方法的非线性收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling-Strength Criteria for Sequential Implicit Formulations
Sequential Fully Implicit (SFI) schemes have been proposed as an alternative to the Fully Implicit Method (FIM). A significant advantage of SFI is that one can employ scalable strategies to the flow and transport problems. However, the primary disadvantage of using SFI compared with FIM is the fact that the splitting errors induced by the decoupling operator, which separates the pressure from the saturation(s), can lead to serious convergence difficulties of the overall nonlinear problem. Thus, it is important to quantify the coupling strength in an adaptive manner in both space and time. We present criteria that localize the computational cells where the pressure and saturation solutions are tightly coupled. The approach is using terms in the FIM Jacobian matrix, we quantify the sensitivity of the mass and volume-balance equations to changes in the pressure and the saturations. We identify three criteria that provide a measure of the coupling strength across the equations and variables. The standard CFL stability criteria, which are based entirely on the saturation equations, are a subset of the new criteria. Here, the pressure equation is solved using Algebraic MultiGrid (AMG), or a multiscale solver, such as the Multiscale Restricted-Smooth Basis (MsRSB) approach. The transport equations are then solved using a fixed total-velocity. These ‘coupling strength’ criteria are used to identify the cells where the pressure-saturation coupling is strong. The applicability of the derived coupling-strength criteria is tested using several test cases. The first test is using a gravitational immiscible dead-oil lock-exchange under a unit mobility ratio and large differences in density. For this case, the SFI algorithm fails to converge to the fully coupled solution due to the large splitting errors. Introducing a fully coupled solution stage on the local subdomains as an additional correction step restores nonlinear convergence. Detailed analysis of the ‘coupling strength’ criteria indicates that the criteria related to the sensitivity of the mass balance to changes in the pressure and the sensitivity of the volume balance to changes in the saturations are the most important ones to satisfy. Other test cases include an alternate gas-water-gas injection in a top layer of the SPE 10 test case and an injection-production scenario in a three-dimensional reservoir with layered lognormally distributed permeability. We propose novel criteria to estimate the strength of coupling between pressure and saturation. These CFL-like numbers are used to identify the cells that require fully implicit treatment in the nonlinear solution strategy. These criteria can also be used to improve the nonlinear convergence rates of Adaptive Implicit Methods (AIM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信