正交指数多项式配点法求解受电弓方程

M. Bilal, N. Rosli, I. Ahmad, M. Sajid
{"title":"正交指数多项式配点法求解受电弓方程","authors":"M. Bilal, N. Rosli, I. Ahmad, M. Sajid","doi":"10.31580/SPS.V1I2.783","DOIUrl":null,"url":null,"abstract":"Novel matrix based numerical technique known as collocation method is implemented for the solution of pantograph differential equations (PDE) via truncated orthoexponential polynomial(OEP). To check applicability, reliability and efficiency of the methodology, here examine three examples of delay differential equations. At last the comparison made between proposed and reported methodologies and present method was perfect in agreement.","PeriodicalId":21574,"journal":{"name":"Science Proceedings Series","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of Pantograph Equation by Collocation method using Orthogonal Exponential Polynomials(OEP)\",\"authors\":\"M. Bilal, N. Rosli, I. Ahmad, M. Sajid\",\"doi\":\"10.31580/SPS.V1I2.783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel matrix based numerical technique known as collocation method is implemented for the solution of pantograph differential equations (PDE) via truncated orthoexponential polynomial(OEP). To check applicability, reliability and efficiency of the methodology, here examine three examples of delay differential equations. At last the comparison made between proposed and reported methodologies and present method was perfect in agreement.\",\"PeriodicalId\":21574,\"journal\":{\"name\":\"Science Proceedings Series\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Proceedings Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31580/SPS.V1I2.783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Proceedings Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31580/SPS.V1I2.783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用截断正交指数多项式(OEP)求解受电弓微分方程,实现了一种新的基于矩阵的数值方法——配点法。为了检验该方法的适用性、可靠性和有效性,这里考察了三个延迟微分方程的例子。最后,将所提出的方法和报告的方法与本方法进行了比较,结果完全一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of Pantograph Equation by Collocation method using Orthogonal Exponential Polynomials(OEP)
Novel matrix based numerical technique known as collocation method is implemented for the solution of pantograph differential equations (PDE) via truncated orthoexponential polynomial(OEP). To check applicability, reliability and efficiency of the methodology, here examine three examples of delay differential equations. At last the comparison made between proposed and reported methodologies and present method was perfect in agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信