{"title":"金属钠原位镀钴金属钠电池","authors":"Saurav L. Chaudhari, Ketan P Pise","doi":"10.13140/RG.2.2.15903.20646","DOIUrl":null,"url":null,"abstract":"In this work, we demonstrate that an impugn of energy density for sodium chemistries can be prevail through an anode-free architecture enabled by the use of a (nanocarbon/Cobaltoxide) nucleation layer formed on Aluminium current collectors. Electrochemical studies show this configuration to provide highly stable and efficient plating and stripping of sodium metal over a range of currents up to 5 mA/cm2, sodium loading up to 14 mAh/cm2, and with long-term endurance exceeding 1000 cycles at a current of 0.7 mA/cm2. Building upon this anode-free architecture, we demonstrate a full cell using a presodiated pyrite cathode to achieve energy densities of 400 Wh/kg, far surpassing recent reports on SIBs and even the theoretical maximum for LIB technology while still relying on naturally abundant raw materials and cost-effective aqueous processing.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium Metal Battery using CobaltOxide through in Situ Plating of Sodium Metal\",\"authors\":\"Saurav L. Chaudhari, Ketan P Pise\",\"doi\":\"10.13140/RG.2.2.15903.20646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we demonstrate that an impugn of energy density for sodium chemistries can be prevail through an anode-free architecture enabled by the use of a (nanocarbon/Cobaltoxide) nucleation layer formed on Aluminium current collectors. Electrochemical studies show this configuration to provide highly stable and efficient plating and stripping of sodium metal over a range of currents up to 5 mA/cm2, sodium loading up to 14 mAh/cm2, and with long-term endurance exceeding 1000 cycles at a current of 0.7 mA/cm2. Building upon this anode-free architecture, we demonstrate a full cell using a presodiated pyrite cathode to achieve energy densities of 400 Wh/kg, far surpassing recent reports on SIBs and even the theoretical maximum for LIB technology while still relying on naturally abundant raw materials and cost-effective aqueous processing.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13140/RG.2.2.15903.20646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13140/RG.2.2.15903.20646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sodium Metal Battery using CobaltOxide through in Situ Plating of Sodium Metal
In this work, we demonstrate that an impugn of energy density for sodium chemistries can be prevail through an anode-free architecture enabled by the use of a (nanocarbon/Cobaltoxide) nucleation layer formed on Aluminium current collectors. Electrochemical studies show this configuration to provide highly stable and efficient plating and stripping of sodium metal over a range of currents up to 5 mA/cm2, sodium loading up to 14 mAh/cm2, and with long-term endurance exceeding 1000 cycles at a current of 0.7 mA/cm2. Building upon this anode-free architecture, we demonstrate a full cell using a presodiated pyrite cathode to achieve energy densities of 400 Wh/kg, far surpassing recent reports on SIBs and even the theoretical maximum for LIB technology while still relying on naturally abundant raw materials and cost-effective aqueous processing.