TraCount:用于高度重叠车辆计数的深度卷积神经网络

Shiv Surya, R. Venkatesh Babu
{"title":"TraCount:用于高度重叠车辆计数的深度卷积神经网络","authors":"Shiv Surya, R. Venkatesh Babu","doi":"10.1145/3009977.3010060","DOIUrl":null,"url":null,"abstract":"We propose a novel deep framework, TraCount, for highly overlapping vehicle counting in congested traffic scenes. TraCount uses multiple fully convolutional(FC) sub-networks to predict the density map for a given static image of a traffic scene. The different FC sub-networks provide a range in size of receptive fields that enable us to count vehicles whose perspective effect varies significantly in a scene due to the large visual field of surveillance cameras. The predictions of different FC sub-networks are fused by weighted averaging to obtain a final density map.\n We show that TraCount outperforms the state of the art methods on the challenging TRANCOS dataset that has a total of 46796 vehicles annotated across 1244 images.","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"38 1","pages":"46:1-46:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"TraCount: a deep convolutional neural network for highly overlapping vehicle counting\",\"authors\":\"Shiv Surya, R. Venkatesh Babu\",\"doi\":\"10.1145/3009977.3010060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel deep framework, TraCount, for highly overlapping vehicle counting in congested traffic scenes. TraCount uses multiple fully convolutional(FC) sub-networks to predict the density map for a given static image of a traffic scene. The different FC sub-networks provide a range in size of receptive fields that enable us to count vehicles whose perspective effect varies significantly in a scene due to the large visual field of surveillance cameras. The predictions of different FC sub-networks are fused by weighted averaging to obtain a final density map.\\n We show that TraCount outperforms the state of the art methods on the challenging TRANCOS dataset that has a total of 46796 vehicles annotated across 1244 images.\",\"PeriodicalId\":93806,\"journal\":{\"name\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"volume\":\"38 1\",\"pages\":\"46:1-46:6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009977.3010060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一个新的深度框架,TraCount,用于在拥挤的交通场景中进行高度重叠的车辆计数。TraCount使用多个全卷积(FC)子网络来预测给定交通场景静态图像的密度图。不同的FC子网络提供了一个接收域大小的范围,使我们能够计算在一个场景中由于监控摄像机的大视野而导致视角效果显著变化的车辆。采用加权平均的方法对不同FC子网的预测结果进行融合,得到最终的密度图。我们表明,在具有挑战性的TRANCOS数据集上,TraCount优于最先进的方法,该数据集在1244张图像中总共标注了46796辆汽车。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TraCount: a deep convolutional neural network for highly overlapping vehicle counting
We propose a novel deep framework, TraCount, for highly overlapping vehicle counting in congested traffic scenes. TraCount uses multiple fully convolutional(FC) sub-networks to predict the density map for a given static image of a traffic scene. The different FC sub-networks provide a range in size of receptive fields that enable us to count vehicles whose perspective effect varies significantly in a scene due to the large visual field of surveillance cameras. The predictions of different FC sub-networks are fused by weighted averaging to obtain a final density map. We show that TraCount outperforms the state of the art methods on the challenging TRANCOS dataset that has a total of 46796 vehicles annotated across 1244 images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信