激光跟踪系统正运动学标定提高工业机器人的位置精度

M. A. Khanesar, S. Piano, David T. Branson
{"title":"激光跟踪系统正运动学标定提高工业机器人的位置精度","authors":"M. A. Khanesar, S. Piano, David T. Branson","doi":"10.5220/0011340200003271","DOIUrl":null,"url":null,"abstract":": Precision positioning of industrial robots is a vital requirement on the factory floor. Robot end effector positioning using joint angle readings from joint encoders and industrial robot forward kinematics (FKs) is a common practice. However, mechanical wear, manufacturing and assembly tolerances, and errors in robot dimension measurement result in parameter uncertainties in the robot FK model. Uncertainties in robot FK result in inaccurate position measurement. In this paper, we use a multi-output least squares support vector regression (MLS-SVR) method to improve the positioning accuracies of industrial robots using a highly accurate laser tracker system, Leica AT960-MR. This equipment is a non-contact metrology one capable of performing measurements with error of less than 3(cid:2020)(cid:1865)/(cid:1865) . To perform this task, industrial robot FK is formulated as a regression problem whose unknown parameters are tuned using laser tracker position data as target values. MLS-SVR algorithm is used to estimate the industrial robot FK parameters. It is observed that using the proposed approach, the accuracy of industrial robot FKs in terms of mean absolute errors of static and near-static motion in all three dimensions decreases from its measured value: from 71.9(cid:2020)(cid:1865) to 20.9(cid:2020)(cid:1865) (71% decrease).","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"4 1","pages":"263-270"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the Positional Accuracy of Industrial Robots by Forward Kinematic Calibration using Laser Tracker System\",\"authors\":\"M. A. Khanesar, S. Piano, David T. Branson\",\"doi\":\"10.5220/0011340200003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Precision positioning of industrial robots is a vital requirement on the factory floor. Robot end effector positioning using joint angle readings from joint encoders and industrial robot forward kinematics (FKs) is a common practice. However, mechanical wear, manufacturing and assembly tolerances, and errors in robot dimension measurement result in parameter uncertainties in the robot FK model. Uncertainties in robot FK result in inaccurate position measurement. In this paper, we use a multi-output least squares support vector regression (MLS-SVR) method to improve the positioning accuracies of industrial robots using a highly accurate laser tracker system, Leica AT960-MR. This equipment is a non-contact metrology one capable of performing measurements with error of less than 3(cid:2020)(cid:1865)/(cid:1865) . To perform this task, industrial robot FK is formulated as a regression problem whose unknown parameters are tuned using laser tracker position data as target values. MLS-SVR algorithm is used to estimate the industrial robot FK parameters. It is observed that using the proposed approach, the accuracy of industrial robot FKs in terms of mean absolute errors of static and near-static motion in all three dimensions decreases from its measured value: from 71.9(cid:2020)(cid:1865) to 20.9(cid:2020)(cid:1865) (71% decrease).\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"4 1\",\"pages\":\"263-270\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011340200003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011340200003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Positional Accuracy of Industrial Robots by Forward Kinematic Calibration using Laser Tracker System
: Precision positioning of industrial robots is a vital requirement on the factory floor. Robot end effector positioning using joint angle readings from joint encoders and industrial robot forward kinematics (FKs) is a common practice. However, mechanical wear, manufacturing and assembly tolerances, and errors in robot dimension measurement result in parameter uncertainties in the robot FK model. Uncertainties in robot FK result in inaccurate position measurement. In this paper, we use a multi-output least squares support vector regression (MLS-SVR) method to improve the positioning accuracies of industrial robots using a highly accurate laser tracker system, Leica AT960-MR. This equipment is a non-contact metrology one capable of performing measurements with error of less than 3(cid:2020)(cid:1865)/(cid:1865) . To perform this task, industrial robot FK is formulated as a regression problem whose unknown parameters are tuned using laser tracker position data as target values. MLS-SVR algorithm is used to estimate the industrial robot FK parameters. It is observed that using the proposed approach, the accuracy of industrial robot FKs in terms of mean absolute errors of static and near-static motion in all three dimensions decreases from its measured value: from 71.9(cid:2020)(cid:1865) to 20.9(cid:2020)(cid:1865) (71% decrease).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信