平均曲率流演化整个图的唯一性

IF 1.2 1区 数学 Q1 MATHEMATICS
P. Daskalopoulos, M. Sáez
{"title":"平均曲率流演化整个图的唯一性","authors":"P. Daskalopoulos, M. Sáez","doi":"10.1515/crelle-2022-0085","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we study the uniqueness of graphical mean curvature flow with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are unique, without any further assumptions. Our methods also give an alternative simple proof of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness of entire proper graphs that satisfy a uniform lower bound on the second fundamental form. The latter result extends to initial conditions that are proper graphs over subdomains of ℝ n {\\mathbb{R}^{n}} . A consequence of our result is the uniqueness of convex entire graphs, which allow us to prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex entire graphs.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"8 1","pages":"201 - 227"},"PeriodicalIF":1.2000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Uniqueness of entire graphs evolving by mean curvature flow\",\"authors\":\"P. Daskalopoulos, M. Sáez\",\"doi\":\"10.1515/crelle-2022-0085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we study the uniqueness of graphical mean curvature flow with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are unique, without any further assumptions. Our methods also give an alternative simple proof of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness of entire proper graphs that satisfy a uniform lower bound on the second fundamental form. The latter result extends to initial conditions that are proper graphs over subdomains of ℝ n {\\\\mathbb{R}^{n}} . A consequence of our result is the uniqueness of convex entire graphs, which allow us to prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex entire graphs.\",\"PeriodicalId\":54896,\"journal\":{\"name\":\"Journal fur die Reine und Angewandte Mathematik\",\"volume\":\"8 1\",\"pages\":\"201 - 227\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal fur die Reine und Angewandte Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2022-0085\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2022-0085","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

摘要本文研究了具有局部Lipschitz初始数据的图形平均曲率流的唯一性。我们首先证明了旋转对称全图是唯一的,没有任何进一步的假设。我们的方法在一维情况下也给出了另一种简单的唯一性证明。在一般情况下,我们建立了在第二种基本形式上满足一致下界的整个固有图的唯一性。后一种结果推广到初始条件,即在1 n {\mathbb{R}^{n}}的子域上的固有图。我们的结果的一个结果是凸整图的唯一性,这使我们能够证明Hamilton的Harnack估计适用于凸整图的平均曲率流解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniqueness of entire graphs evolving by mean curvature flow
Abstract In this paper we study the uniqueness of graphical mean curvature flow with locally Lipschitz initial data. We first prove that rotationally symmetric entire graphs are unique, without any further assumptions. Our methods also give an alternative simple proof of uniqueness in the one-dimensional case. In the general case, we establish the uniqueness of entire proper graphs that satisfy a uniform lower bound on the second fundamental form. The latter result extends to initial conditions that are proper graphs over subdomains of ℝ n {\mathbb{R}^{n}} . A consequence of our result is the uniqueness of convex entire graphs, which allow us to prove that Hamilton’s Harnack estimate holds for mean curvature flow solutions that are convex entire graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信