{"title":"自适应贝叶斯信道增益制图","authors":"Donghoon Lee, Dimitris Berberidis, G. Giannakis","doi":"10.1109/ICASSP.2018.8461412","DOIUrl":null,"url":null,"abstract":"Channel gain cartography relies on sensor measurements to construct maps providing the attenuation profile between arbitrary transmitter-receiver locations. Existing approaches capitalize on tomographic models, where shadowing is the weighted integral of a spatial loss field (SLF) depending on the propagation environment. Currently, the SLF is learned via regularization methods tailored to the propagation environment. However, the effectiveness of existing approaches remains unclear especially when the propagation environment involves heterogeneous characteristics. To cope with this, the present work considers a piecewise homogeneous SLF with a hidden Markov random field (MRF) model under the Bayesian framework. Efficient field estimators are obtained by using samples from Markov chain Monte Carlo (MCMC). Furthermore, an uncertainty sampling algorithm is developed to adaptively collect measurements. Real data tests demonstrate the capabilities of the novel approach.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"73 1","pages":"3554-3558"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive Bayesian Channel Gain Cartography\",\"authors\":\"Donghoon Lee, Dimitris Berberidis, G. Giannakis\",\"doi\":\"10.1109/ICASSP.2018.8461412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel gain cartography relies on sensor measurements to construct maps providing the attenuation profile between arbitrary transmitter-receiver locations. Existing approaches capitalize on tomographic models, where shadowing is the weighted integral of a spatial loss field (SLF) depending on the propagation environment. Currently, the SLF is learned via regularization methods tailored to the propagation environment. However, the effectiveness of existing approaches remains unclear especially when the propagation environment involves heterogeneous characteristics. To cope with this, the present work considers a piecewise homogeneous SLF with a hidden Markov random field (MRF) model under the Bayesian framework. Efficient field estimators are obtained by using samples from Markov chain Monte Carlo (MCMC). Furthermore, an uncertainty sampling algorithm is developed to adaptively collect measurements. Real data tests demonstrate the capabilities of the novel approach.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"73 1\",\"pages\":\"3554-3558\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Channel gain cartography relies on sensor measurements to construct maps providing the attenuation profile between arbitrary transmitter-receiver locations. Existing approaches capitalize on tomographic models, where shadowing is the weighted integral of a spatial loss field (SLF) depending on the propagation environment. Currently, the SLF is learned via regularization methods tailored to the propagation environment. However, the effectiveness of existing approaches remains unclear especially when the propagation environment involves heterogeneous characteristics. To cope with this, the present work considers a piecewise homogeneous SLF with a hidden Markov random field (MRF) model under the Bayesian framework. Efficient field estimators are obtained by using samples from Markov chain Monte Carlo (MCMC). Furthermore, an uncertainty sampling algorithm is developed to adaptively collect measurements. Real data tests demonstrate the capabilities of the novel approach.