社交媒体意见汇总技术调查

Mohammed Elsaid Moussa, Ensaf Hussein Mohamed, Mohamed Hassan Haggag
{"title":"社交媒体意见汇总技术调查","authors":"Mohammed Elsaid Moussa,&nbsp;Ensaf Hussein Mohamed,&nbsp;Mohamed Hassan Haggag","doi":"10.1016/j.fcij.2017.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>The volume of data on the social media is huge and even keeps increasing. The need for efficient processing of this extensive information resulted in increasing research interest in knowledge engineering tasks such as Opinion Summarization. This survey shows the current opinion summarization challenges for social media, then the necessary pre-summarization steps like preprocessing, features extraction, noise elimination, and handling of synonym features. Next, it covers the various approaches used in opinion summarization like Visualization, Abstractive, Aspect based, Query-focused, Real Time, Update Summarization, and highlight other Opinion Summarization approaches such as Contrastive, Concept-based, Community Detection, Domain Specific, Bilingual, Social Bookmarking, and Social Media Sampling. It covers the different datasets used in opinion summarization and future work suggested in each technique. Finally, it provides different ways for evaluating opinion summarization.</p></div>","PeriodicalId":100561,"journal":{"name":"Future Computing and Informatics Journal","volume":"3 1","pages":"Pages 82-109"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.fcij.2017.12.002","citationCount":"39","resultStr":"{\"title\":\"A survey on opinion summarization techniques for social media\",\"authors\":\"Mohammed Elsaid Moussa,&nbsp;Ensaf Hussein Mohamed,&nbsp;Mohamed Hassan Haggag\",\"doi\":\"10.1016/j.fcij.2017.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The volume of data on the social media is huge and even keeps increasing. The need for efficient processing of this extensive information resulted in increasing research interest in knowledge engineering tasks such as Opinion Summarization. This survey shows the current opinion summarization challenges for social media, then the necessary pre-summarization steps like preprocessing, features extraction, noise elimination, and handling of synonym features. Next, it covers the various approaches used in opinion summarization like Visualization, Abstractive, Aspect based, Query-focused, Real Time, Update Summarization, and highlight other Opinion Summarization approaches such as Contrastive, Concept-based, Community Detection, Domain Specific, Bilingual, Social Bookmarking, and Social Media Sampling. It covers the different datasets used in opinion summarization and future work suggested in each technique. Finally, it provides different ways for evaluating opinion summarization.</p></div>\",\"PeriodicalId\":100561,\"journal\":{\"name\":\"Future Computing and Informatics Journal\",\"volume\":\"3 1\",\"pages\":\"Pages 82-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.fcij.2017.12.002\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Computing and Informatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2314728817300582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Computing and Informatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2314728817300582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

社交媒体上的数据量是巨大的,甚至还在不断增加。对这些广泛信息进行有效处理的需求导致了对知识工程任务(如意见总结)的研究兴趣不断增加。本调查显示了当前社交媒体的意见总结所面临的挑战,然后是必要的预总结步骤,如预处理、特征提取、噪声消除和同义词特征处理。接下来,它涵盖了用于意见摘要的各种方法,如可视化、抽象、基于方面、以查询为中心、实时、更新摘要,并强调了其他意见摘要方法,如对比、基于概念、社区检测、特定领域、双语、社会书签和社会媒体抽样。它涵盖了意见总结中使用的不同数据集以及每种技术建议的未来工作。最后,给出了评价意见总结的不同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey on opinion summarization techniques for social media

The volume of data on the social media is huge and even keeps increasing. The need for efficient processing of this extensive information resulted in increasing research interest in knowledge engineering tasks such as Opinion Summarization. This survey shows the current opinion summarization challenges for social media, then the necessary pre-summarization steps like preprocessing, features extraction, noise elimination, and handling of synonym features. Next, it covers the various approaches used in opinion summarization like Visualization, Abstractive, Aspect based, Query-focused, Real Time, Update Summarization, and highlight other Opinion Summarization approaches such as Contrastive, Concept-based, Community Detection, Domain Specific, Bilingual, Social Bookmarking, and Social Media Sampling. It covers the different datasets used in opinion summarization and future work suggested in each technique. Finally, it provides different ways for evaluating opinion summarization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信