{"title":"Gődel残留格中的滤波器","authors":"D. Piciu, Christina-Theresia Dan, Anca Dina","doi":"10.2478/auom-2021-0012","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, in the spirit of [4], we study a new type of filters in residuated lattices : Gődel filters. So, we characterize the filters for which the quotient algebra that is constructed via these filters is a Gődel algebra and we establish the connections between these filters and other types of filters. Using Gődel filters we characterize the residuated lattices which are Gődel algebras. Also, we prove that a residuated lattice is a Gődel algebra (divisible residuated lattice, MTL algebra, BL algebra) if and only if every filter is a Gődel filter (divisible filter, MTL filter, BL filter). Finally, we present some results about injective Gődel algebras showing that complete Boolean algebras are injective objects in the category of Gődel algebras.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"13 1","pages":"183 - 200"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gődel filters in residuated lattices\",\"authors\":\"D. Piciu, Christina-Theresia Dan, Anca Dina\",\"doi\":\"10.2478/auom-2021-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, in the spirit of [4], we study a new type of filters in residuated lattices : Gődel filters. So, we characterize the filters for which the quotient algebra that is constructed via these filters is a Gődel algebra and we establish the connections between these filters and other types of filters. Using Gődel filters we characterize the residuated lattices which are Gődel algebras. Also, we prove that a residuated lattice is a Gődel algebra (divisible residuated lattice, MTL algebra, BL algebra) if and only if every filter is a Gődel filter (divisible filter, MTL filter, BL filter). Finally, we present some results about injective Gődel algebras showing that complete Boolean algebras are injective objects in the category of Gődel algebras.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"13 1\",\"pages\":\"183 - 200\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract In this paper, in the spirit of [4], we study a new type of filters in residuated lattices : Gődel filters. So, we characterize the filters for which the quotient algebra that is constructed via these filters is a Gődel algebra and we establish the connections between these filters and other types of filters. Using Gődel filters we characterize the residuated lattices which are Gődel algebras. Also, we prove that a residuated lattice is a Gődel algebra (divisible residuated lattice, MTL algebra, BL algebra) if and only if every filter is a Gődel filter (divisible filter, MTL filter, BL filter). Finally, we present some results about injective Gődel algebras showing that complete Boolean algebras are injective objects in the category of Gődel algebras.
期刊介绍:
This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.