{"title":"使用约束蒙特卡罗树搜索生成具有用户偏好的可信因果图","authors":"V. Soo, Chi-Mou Lee, T. Chen","doi":"10.1609/aiide.v12i1.12875","DOIUrl":null,"url":null,"abstract":"\n \n We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"10 1","pages":"218-224"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search\",\"authors\":\"V. Soo, Chi-Mou Lee, T. Chen\",\"doi\":\"10.1609/aiide.v12i1.12875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.\\n \\n\",\"PeriodicalId\":92576,\"journal\":{\"name\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"volume\":\"10 1\",\"pages\":\"218-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v12i1.12875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i1.12875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search
We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.