使用约束蒙特卡罗树搜索生成具有用户偏好的可信因果图

V. Soo, Chi-Mou Lee, T. Chen
{"title":"使用约束蒙特卡罗树搜索生成具有用户偏好的可信因果图","authors":"V. Soo, Chi-Mou Lee, T. Chen","doi":"10.1609/aiide.v12i1.12875","DOIUrl":null,"url":null,"abstract":"\n \n We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.\n \n","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"10 1","pages":"218-224"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search\",\"authors\":\"V. Soo, Chi-Mou Lee, T. Chen\",\"doi\":\"10.1609/aiide.v12i1.12875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.\\n \\n\",\"PeriodicalId\":92576,\"journal\":{\"name\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"volume\":\"10 1\",\"pages\":\"218-224\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/aiide.v12i1.12875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i1.12875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们通过从现有的常识本体ConceptNet5中提取因果链接,构建了基于Fabula元素的大规模因果知识。我们设计了一个约束蒙特卡罗树搜索(cMCTS)算法,允许用户指定在生成的故事中出现的积极和消极概念。cMCTS可以找到一个可信的因果故事情节。我们通过实验证明了其优点,并讨论了在cMCTS中可能产生不连贯因果图的补救策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generate Believable Causal Plots with User Preferences Using Constrained Monte Carlo Tree Search
We construct a large scale of causal knowledge in term of Fabula elements by extracting causal links from existing common sense ontology ConceptNet5. We design a Constrained Monte Carlo Tree Search (cMCTS) algorithm that allows users to specify positive and negative concepts to appear in the generated stories. cMCTS can find a believable causal story plot. We show the merits by experiments and discuss the remedy strategies in cMCTS that may generate incoherent causal plots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信