占领云:99%人口的分布式计算

Eric Jonas, Qifan Pu, S. Venkataraman, I. Stoica, B. Recht
{"title":"占领云:99%人口的分布式计算","authors":"Eric Jonas, Qifan Pu, S. Venkataraman, I. Stoica, B. Recht","doi":"10.1145/3127479.3128601","DOIUrl":null,"url":null,"abstract":"Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple embarrassingly parallel jobs. We argue that stateless functions represent a viable platform for these users, eliminating cluster management overhead, fulfilling the promise of elasticity. Furthermore, using our prototype implementation, PyWren, we show that this model is general enough to implement a number of distributed computing models, such as BSP, efficiently. Extrapolating from recent trends in network bandwidth and the advent of disaggregated storage, we suggest that stateless functions are a natural fit for data processing in future computing environments.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"449","resultStr":"{\"title\":\"Occupy the cloud: distributed computing for the 99%\",\"authors\":\"Eric Jonas, Qifan Pu, S. Venkataraman, I. Stoica, B. Recht\",\"doi\":\"10.1145/3127479.3128601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple embarrassingly parallel jobs. We argue that stateless functions represent a viable platform for these users, eliminating cluster management overhead, fulfilling the promise of elasticity. Furthermore, using our prototype implementation, PyWren, we show that this model is general enough to implement a number of distributed computing models, such as BSP, efficiently. Extrapolating from recent trends in network bandwidth and the advent of disaggregated storage, we suggest that stateless functions are a natural fit for data processing in future computing environments.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"449\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3128601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3128601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 449

摘要

尽管有许多开源平台和广泛的商业产品,但大量用户仍然无法使用分布式计算。虽然分布式计算框架已经超越了简单的map-reduce模型,但许多用户仍然要与复杂的集群管理和配置工具作斗争,即使是运行简单的令人尴尬的并行作业。我们认为无状态函数为这些用户提供了一个可行的平台,消除了集群管理开销,实现了弹性的承诺。此外,使用我们的原型实现PyWren,我们证明了该模型足够通用,可以有效地实现许多分布式计算模型,例如BSP。从网络带宽的最新趋势和分解存储的出现推断,我们认为无状态函数是未来计算环境中数据处理的自然选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occupy the cloud: distributed computing for the 99%
Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple embarrassingly parallel jobs. We argue that stateless functions represent a viable platform for these users, eliminating cluster management overhead, fulfilling the promise of elasticity. Furthermore, using our prototype implementation, PyWren, we show that this model is general enough to implement a number of distributed computing models, such as BSP, efficiently. Extrapolating from recent trends in network bandwidth and the advent of disaggregated storage, we suggest that stateless functions are a natural fit for data processing in future computing environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信