冠层结构假设对小麦和玉米作物GAI和叶片叶绿素含量反演的影响

Jingyi Jiang, M. Weiss, Shouyang Liu, F. Baret
{"title":"冠层结构假设对小麦和玉米作物GAI和叶片叶绿素含量反演的影响","authors":"Jingyi Jiang, M. Weiss, Shouyang Liu, F. Baret","doi":"10.1109/IGARSS.2019.8899064","DOIUrl":null,"url":null,"abstract":"Green Area Index (GAI) and Leaf Chlorophyll Content (LCC) are key variables that reflect the potential growth of the canopy. In the past decades, the retrieval of these variables from remote sensing data to generate operational products at high spatial resolution (lower than decametric) was mainly based on 1D radiative transfer model inversion. However, due to the recent advances in computational facility, it is now possible to invert 3D radiative transfer models to improve the operational product accuracy. The use of 3D models allows taking into account more realistic canopy architectures than when using the turbid medium assumption from the 1D radiative transfer models. In this study, we demonstrate the gain in accuracy when inverting crop specific using 3D radiative transfer models as compared to a generic algorithm based on 1D model. We investigate two crops characterized by contrasted architectures along the vegetation cycle, e.g. wheat and maize.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"7216-7219"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The impact of canopy structure assumption on the retrieval of GAI and Leaf Chlorophyll Content for wheat and maize crops\",\"authors\":\"Jingyi Jiang, M. Weiss, Shouyang Liu, F. Baret\",\"doi\":\"10.1109/IGARSS.2019.8899064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green Area Index (GAI) and Leaf Chlorophyll Content (LCC) are key variables that reflect the potential growth of the canopy. In the past decades, the retrieval of these variables from remote sensing data to generate operational products at high spatial resolution (lower than decametric) was mainly based on 1D radiative transfer model inversion. However, due to the recent advances in computational facility, it is now possible to invert 3D radiative transfer models to improve the operational product accuracy. The use of 3D models allows taking into account more realistic canopy architectures than when using the turbid medium assumption from the 1D radiative transfer models. In this study, we demonstrate the gain in accuracy when inverting crop specific using 3D radiative transfer models as compared to a generic algorithm based on 1D model. We investigate two crops characterized by contrasted architectures along the vegetation cycle, e.g. wheat and maize.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"18 1\",\"pages\":\"7216-7219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8899064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8899064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

绿面积指数(GAI)和叶片叶绿素含量(LCC)是反映林冠生长潜力的关键变量。在过去的几十年里,从遥感数据中获取这些变量以生成高空间分辨率(低于十米)的业务产品主要是基于一维辐射传输模型反演。然而,由于最近计算设施的进步,现在可以反演三维辐射传输模型以提高操作产品的准确性。与使用1D辐射传输模型中的浑浊介质假设相比,使用3D模型可以考虑到更真实的树冠结构。在本研究中,我们展示了与基于一维模型的通用算法相比,使用3D辐射传输模型反演特定作物时的精度增益。我们研究了两种以植被周期结构对比为特征的作物,如小麦和玉米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of canopy structure assumption on the retrieval of GAI and Leaf Chlorophyll Content for wheat and maize crops
Green Area Index (GAI) and Leaf Chlorophyll Content (LCC) are key variables that reflect the potential growth of the canopy. In the past decades, the retrieval of these variables from remote sensing data to generate operational products at high spatial resolution (lower than decametric) was mainly based on 1D radiative transfer model inversion. However, due to the recent advances in computational facility, it is now possible to invert 3D radiative transfer models to improve the operational product accuracy. The use of 3D models allows taking into account more realistic canopy architectures than when using the turbid medium assumption from the 1D radiative transfer models. In this study, we demonstrate the gain in accuracy when inverting crop specific using 3D radiative transfer models as compared to a generic algorithm based on 1D model. We investigate two crops characterized by contrasted architectures along the vegetation cycle, e.g. wheat and maize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信