三态氧O(3P)原子与丁二烯反应的量子研究

Q3 Biochemistry, Genetics and Molecular Biology
Boulanouar Messaoudi, M. Cheriet, Rayenne Djemil, D. Khatmi̇
{"title":"三态氧O(3P)原子与丁二烯反应的量子研究","authors":"Boulanouar Messaoudi, M. Cheriet, Rayenne Djemil, D. Khatmi̇","doi":"10.33435/tcandtc.1144794","DOIUrl":null,"url":null,"abstract":"We have explored the potential energy surface of the triplet oxygen atom O(3P) reaction with 1,3-butadiene at CBS-QB3 levels of theory. Possible different pathways have been determined to better understand the reaction mechanism. Thus, the first pathway of the oxidation of 1,3-butadiene by the triplet oxygen O(3P) is show that the major product is CH3-CO-CH=CH2. The results agree with those obtained experimentally in relative to the reaction enthalpies. The transition state theory (TST) was employed to compute rate constants over the temperature range 297-798K. The obtained results have shown that the electrophilic O-addition pathways on the double bond are dominant up in the temperature range. The activation energy is in line with the proposed addition mechanism.","PeriodicalId":36025,"journal":{"name":"Turkish Computational and Theoretical Chemistry","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene\",\"authors\":\"Boulanouar Messaoudi, M. Cheriet, Rayenne Djemil, D. Khatmi̇\",\"doi\":\"10.33435/tcandtc.1144794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have explored the potential energy surface of the triplet oxygen atom O(3P) reaction with 1,3-butadiene at CBS-QB3 levels of theory. Possible different pathways have been determined to better understand the reaction mechanism. Thus, the first pathway of the oxidation of 1,3-butadiene by the triplet oxygen O(3P) is show that the major product is CH3-CO-CH=CH2. The results agree with those obtained experimentally in relative to the reaction enthalpies. The transition state theory (TST) was employed to compute rate constants over the temperature range 297-798K. The obtained results have shown that the electrophilic O-addition pathways on the double bond are dominant up in the temperature range. The activation energy is in line with the proposed addition mechanism.\",\"PeriodicalId\":36025,\"journal\":{\"name\":\"Turkish Computational and Theoretical Chemistry\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33435/tcandtc.1144794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Computational and Theoretical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33435/tcandtc.1144794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

本文从理论上探讨了三态氧原子O(3P)与1,3-丁二烯反应在CBS-QB3水平上的势能面。为了更好地了解反应机制,已经确定了可能的不同途径。因此,三态氧O(3P)氧化1,3-丁二烯的第一反应途径为主要产物为CH3-CO-CH=CH2。所得结果与实验结果一致。利用过渡态理论(TST)计算了297 ~ 798k温度范围内的速率常数。结果表明,在温度范围内,双键上的亲电o加成途径占主导地位。活化能符合所提出的加成机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum investigation of the reaction between triplet oxygen O(3P) atom and butadiene
We have explored the potential energy surface of the triplet oxygen atom O(3P) reaction with 1,3-butadiene at CBS-QB3 levels of theory. Possible different pathways have been determined to better understand the reaction mechanism. Thus, the first pathway of the oxidation of 1,3-butadiene by the triplet oxygen O(3P) is show that the major product is CH3-CO-CH=CH2. The results agree with those obtained experimentally in relative to the reaction enthalpies. The transition state theory (TST) was employed to compute rate constants over the temperature range 297-798K. The obtained results have shown that the electrophilic O-addition pathways on the double bond are dominant up in the temperature range. The activation energy is in line with the proposed addition mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Computational and Theoretical Chemistry
Turkish Computational and Theoretical Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信