{"title":"细胞色素c中CD拉伸模式的振动能量弛豫(VER)","authors":"H. Fujisaki, L. Bu, J. Straub","doi":"10.1002/0471712531.CH15","DOIUrl":null,"url":null,"abstract":"We first review how to determine the rate of vibrational energy relaxation (VER) using perturbation theory. We then apply those theoretical results to the problem of VER of a CD stretching mode in the protein cytochrome c. We model cytochrome c in vacuum as a normal mode system with the lowest-order anharmonic coupling elements. We find that, for the “lifetime” width parameter = 3 ∼ 30 cm 1 , the VER time is 0.2 ∼ 0.3 ps, which agrees rather well with the previous classical calculation using the quantum correction factor method, and is consistent with spectroscopic experiments by Romesberg’s group. We decompose the VER rate into separate contributions from two modes, and find that the most significant contribution, which depends on the “lifetime” width parameter, comes from those modes most resonant with the CD vibrational mode.","PeriodicalId":8447,"journal":{"name":"arXiv: Biomolecules","volume":"20 1","pages":"179-203"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Vibrational energy relaxation (VER) of a CD stretching mode in cytochrome c\",\"authors\":\"H. Fujisaki, L. Bu, J. Straub\",\"doi\":\"10.1002/0471712531.CH15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first review how to determine the rate of vibrational energy relaxation (VER) using perturbation theory. We then apply those theoretical results to the problem of VER of a CD stretching mode in the protein cytochrome c. We model cytochrome c in vacuum as a normal mode system with the lowest-order anharmonic coupling elements. We find that, for the “lifetime” width parameter = 3 ∼ 30 cm 1 , the VER time is 0.2 ∼ 0.3 ps, which agrees rather well with the previous classical calculation using the quantum correction factor method, and is consistent with spectroscopic experiments by Romesberg’s group. We decompose the VER rate into separate contributions from two modes, and find that the most significant contribution, which depends on the “lifetime” width parameter, comes from those modes most resonant with the CD vibrational mode.\",\"PeriodicalId\":8447,\"journal\":{\"name\":\"arXiv: Biomolecules\",\"volume\":\"20 1\",\"pages\":\"179-203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/0471712531.CH15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/0471712531.CH15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
我们首先回顾了如何用微扰理论确定振动能量弛豫率。然后,我们将这些理论结果应用于蛋白质细胞色素c的CD拉伸模式的VER问题。我们将真空中的细胞色素c建模为具有最低阶非谐波耦合元素的正常模式系统。我们发现,当“寿命”宽度参数= 3 ~ 30 cm 1时,VER时间为0.2 ~ 0.3 ps,这与先前使用量子校正因子方法的经典计算结果相当吻合,并且与Romesberg小组的光谱实验结果一致。我们将VER率分解为两种模式的独立贡献,发现与CD振动模式最共振的模式对VER率的贡献最大,这取决于“寿命”宽度参数。
Vibrational energy relaxation (VER) of a CD stretching mode in cytochrome c
We first review how to determine the rate of vibrational energy relaxation (VER) using perturbation theory. We then apply those theoretical results to the problem of VER of a CD stretching mode in the protein cytochrome c. We model cytochrome c in vacuum as a normal mode system with the lowest-order anharmonic coupling elements. We find that, for the “lifetime” width parameter = 3 ∼ 30 cm 1 , the VER time is 0.2 ∼ 0.3 ps, which agrees rather well with the previous classical calculation using the quantum correction factor method, and is consistent with spectroscopic experiments by Romesberg’s group. We decompose the VER rate into separate contributions from two modes, and find that the most significant contribution, which depends on the “lifetime” width parameter, comes from those modes most resonant with the CD vibrational mode.