基于Ransac的结肠镜图像运动补偿恢复

Nidhal Azawi, J. Gauch
{"title":"基于Ransac的结肠镜图像运动补偿恢复","authors":"Nidhal Azawi, J. Gauch","doi":"10.5121/sipij.2019.10402","DOIUrl":null,"url":null,"abstract":"Colonoscopy is a procedure that has been used widely to detect the abnormality in a colon. Colonoscopy images suffer from a lot of problems that make it hard for the doctor to investigate/ understand a colon patient. Unfortunately, with the current technology, three is no way for doctors to know if the whole colon surface has been investigated or not. We have developed a method that utilizes RANSAC-based image registration to align sequences of any length in the colonoscopy video and restores each frame of the video using information from these aligned images. We proposed two methods. First method used the deep neural net for the classification of informative and non-informative image. The classification result was used as a preprocessing for alignment method. Also, we proposed a visualization structure for the classification results. The second method used the alignment to decide/classify the bad and good alignment by using two factors. The first factor is the accumulated error and the second factor contain three checking steps that check the pair error alignment beside the geometry transform status. The second method was able to align long sequences.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ransac Based Motion Compensated Restoration for Colonoscopy Images\",\"authors\":\"Nidhal Azawi, J. Gauch\",\"doi\":\"10.5121/sipij.2019.10402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Colonoscopy is a procedure that has been used widely to detect the abnormality in a colon. Colonoscopy images suffer from a lot of problems that make it hard for the doctor to investigate/ understand a colon patient. Unfortunately, with the current technology, three is no way for doctors to know if the whole colon surface has been investigated or not. We have developed a method that utilizes RANSAC-based image registration to align sequences of any length in the colonoscopy video and restores each frame of the video using information from these aligned images. We proposed two methods. First method used the deep neural net for the classification of informative and non-informative image. The classification result was used as a preprocessing for alignment method. Also, we proposed a visualization structure for the classification results. The second method used the alignment to decide/classify the bad and good alignment by using two factors. The first factor is the accumulated error and the second factor contain three checking steps that check the pair error alignment beside the geometry transform status. The second method was able to align long sequences.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"154 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/sipij.2019.10402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/sipij.2019.10402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结肠镜检查是一种广泛用于检测结肠异常的方法。结肠镜检查图像存在许多问题,这使得医生很难调查/了解结肠患者。不幸的是,以目前的技术,医生没有办法知道整个结肠表面是否已经被检查过。我们开发了一种方法,利用基于ransac的图像配准来对齐结肠镜检查视频中任意长度的序列,并使用这些对齐图像中的信息恢复视频的每一帧。我们提出了两种方法。第一种方法利用深度神经网络对信息图像和非信息图像进行分类。分类结果作为比对方法的预处理。此外,我们还提出了分类结果的可视化结构。第二种方法是利用两个因素来确定/分类好的对齐和不好的对齐。第一个因素是累积误差,第二个因素包含三个检查步骤,检查几何变换状态旁边的对误差对齐。第二种方法能够对齐长序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ransac Based Motion Compensated Restoration for Colonoscopy Images
Colonoscopy is a procedure that has been used widely to detect the abnormality in a colon. Colonoscopy images suffer from a lot of problems that make it hard for the doctor to investigate/ understand a colon patient. Unfortunately, with the current technology, three is no way for doctors to know if the whole colon surface has been investigated or not. We have developed a method that utilizes RANSAC-based image registration to align sequences of any length in the colonoscopy video and restores each frame of the video using information from these aligned images. We proposed two methods. First method used the deep neural net for the classification of informative and non-informative image. The classification result was used as a preprocessing for alignment method. Also, we proposed a visualization structure for the classification results. The second method used the alignment to decide/classify the bad and good alignment by using two factors. The first factor is the accumulated error and the second factor contain three checking steps that check the pair error alignment beside the geometry transform status. The second method was able to align long sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信