{"title":"p限制驱动水生细菌产生DOM的变化","authors":"Seth K. Thompson, J. Cotner","doi":"10.3354/ame01940","DOIUrl":null,"url":null,"abstract":"Heterotrophic bacteria are key biogeochemical regulators in freshwater systems. Through both decomposition and production of organic matter, bacteria link multiple biogeochemical cycles together. While there has been a significant amount of work done on understanding the role of microbes in the aquatic carbon cycle, important linkages with other biogeochemical cycles will require more information about how organic matter transformations impact other nutrients, such as phosphorus. In this study, we conducted a culture-based laboratory experiment to examine the production of dissolved organic matter (DOM) by heterotrophic bacteria under varied nutrient conditions. In addition to quantifying the production of dissolved organic carbon (DOC), we also measured the production of dissolved organic phosphorus (DOP) and characterized the microbially produced organic matter using optical properties. Results demonstrated that measurable amounts of DOC and DOP were produced by heterotrophic bacteria under nutrient regimes ranging from carbon-limitation to strong phosphorus-limitation. Additionally, optical characterization of DOM revealed that the organic matter produced by bacteria grown under high phosphorus conditions was highly aromatic with similar optical properties to terrestrially derived organic matter. Overall, these findings suggest that heterotrophic bacteria can be important producers of organic matter in freshwaters and that continued trends of increased nutrient concentrations (eutrophication) may fundamentally change the composition of microbially produced organic matter in freshwater systems.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"36 1","pages":"35-46"},"PeriodicalIF":1.6000,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"P-limitation drives changes in DOM production by aquatic bacteria\",\"authors\":\"Seth K. Thompson, J. Cotner\",\"doi\":\"10.3354/ame01940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterotrophic bacteria are key biogeochemical regulators in freshwater systems. Through both decomposition and production of organic matter, bacteria link multiple biogeochemical cycles together. While there has been a significant amount of work done on understanding the role of microbes in the aquatic carbon cycle, important linkages with other biogeochemical cycles will require more information about how organic matter transformations impact other nutrients, such as phosphorus. In this study, we conducted a culture-based laboratory experiment to examine the production of dissolved organic matter (DOM) by heterotrophic bacteria under varied nutrient conditions. In addition to quantifying the production of dissolved organic carbon (DOC), we also measured the production of dissolved organic phosphorus (DOP) and characterized the microbially produced organic matter using optical properties. Results demonstrated that measurable amounts of DOC and DOP were produced by heterotrophic bacteria under nutrient regimes ranging from carbon-limitation to strong phosphorus-limitation. Additionally, optical characterization of DOM revealed that the organic matter produced by bacteria grown under high phosphorus conditions was highly aromatic with similar optical properties to terrestrially derived organic matter. Overall, these findings suggest that heterotrophic bacteria can be important producers of organic matter in freshwaters and that continued trends of increased nutrient concentrations (eutrophication) may fundamentally change the composition of microbially produced organic matter in freshwater systems.\",\"PeriodicalId\":8112,\"journal\":{\"name\":\"Aquatic Microbial Ecology\",\"volume\":\"36 1\",\"pages\":\"35-46\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Microbial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3354/ame01940\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/ame01940","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
P-limitation drives changes in DOM production by aquatic bacteria
Heterotrophic bacteria are key biogeochemical regulators in freshwater systems. Through both decomposition and production of organic matter, bacteria link multiple biogeochemical cycles together. While there has been a significant amount of work done on understanding the role of microbes in the aquatic carbon cycle, important linkages with other biogeochemical cycles will require more information about how organic matter transformations impact other nutrients, such as phosphorus. In this study, we conducted a culture-based laboratory experiment to examine the production of dissolved organic matter (DOM) by heterotrophic bacteria under varied nutrient conditions. In addition to quantifying the production of dissolved organic carbon (DOC), we also measured the production of dissolved organic phosphorus (DOP) and characterized the microbially produced organic matter using optical properties. Results demonstrated that measurable amounts of DOC and DOP were produced by heterotrophic bacteria under nutrient regimes ranging from carbon-limitation to strong phosphorus-limitation. Additionally, optical characterization of DOM revealed that the organic matter produced by bacteria grown under high phosphorus conditions was highly aromatic with similar optical properties to terrestrially derived organic matter. Overall, these findings suggest that heterotrophic bacteria can be important producers of organic matter in freshwaters and that continued trends of increased nutrient concentrations (eutrophication) may fundamentally change the composition of microbially produced organic matter in freshwater systems.
期刊介绍:
AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with:
Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.).
Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity.
Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.