设计有效的运动数字生物标志物,用于不显眼的情绪状态移动监测

Abhinav Mehrotra, Mirco Musolesi
{"title":"设计有效的运动数字生物标志物,用于不显眼的情绪状态移动监测","authors":"Abhinav Mehrotra, Mirco Musolesi","doi":"10.1145/3089341.3089342","DOIUrl":null,"url":null,"abstract":"Mobile sensing technologies and machine learning techniques have been successfully exploited to build effective systems for mental health monitoring and intervention. Various approaches have recently been proposed to effectively exploit contextual information such as mobility, communication and mobile usage patterns for quantifying users' emotional states and wellbeing. In particular, it has been shown that location information collected by means of smartphones can be successfully used to monitor and predict depression levels, as measured by means of standard scores such as PHQ-8. In this paper, we investigate the design of novel digital biomarkers based on the fine-grained characterization of the mobility patterns of a user, also considering the temporal dimension of their movements (e.g., sequence of places visited by them). We show that the proposed biomarkers have a statistically significant association with emotional states. We also demonstrate that emotional states have a stronger relationship with mobility patterns of weekdays compared to all days of a week. Finally, we discuss the challenges in using these biomarkers in the implementation of \"emotion-aware\" systems for digital health.","PeriodicalId":92197,"journal":{"name":"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Designing Effective Movement Digital Biomarkers for Unobtrusive Emotional State Mobile Monitoring\",\"authors\":\"Abhinav Mehrotra, Mirco Musolesi\",\"doi\":\"10.1145/3089341.3089342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile sensing technologies and machine learning techniques have been successfully exploited to build effective systems for mental health monitoring and intervention. Various approaches have recently been proposed to effectively exploit contextual information such as mobility, communication and mobile usage patterns for quantifying users' emotional states and wellbeing. In particular, it has been shown that location information collected by means of smartphones can be successfully used to monitor and predict depression levels, as measured by means of standard scores such as PHQ-8. In this paper, we investigate the design of novel digital biomarkers based on the fine-grained characterization of the mobility patterns of a user, also considering the temporal dimension of their movements (e.g., sequence of places visited by them). We show that the proposed biomarkers have a statistically significant association with emotional states. We also demonstrate that emotional states have a stronger relationship with mobility patterns of weekdays compared to all days of a week. Finally, we discuss the challenges in using these biomarkers in the implementation of \\\"emotion-aware\\\" systems for digital health.\",\"PeriodicalId\":92197,\"journal\":{\"name\":\"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3089341.3089342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DigitalBiomarkers'17 : proceedings of the 1st Workshop on Digital Biomarkers : June 23, 2017, Niagara Falls, NY, USA. Workshop on Digital Biomarkers (1st : 2017 : Niagara Falls, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3089341.3089342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

移动传感技术和机器学习技术已被成功地用于建立有效的心理健康监测和干预系统。最近提出了各种方法来有效地利用诸如移动性、通信和移动使用模式等上下文信息来量化用户的情绪状态和幸福感。特别是,通过智能手机收集的位置信息可以成功地用于监测和预测抑郁程度,如通过PHQ-8等标准分数来衡量。在本文中,我们研究了基于用户移动模式的细粒度特征的新型数字生物标志物的设计,同时考虑了他们的运动的时间维度(例如,他们访问的地方的顺序)。我们表明,提出的生物标志物与情绪状态有统计学上显著的关联。我们还证明,与一周中的所有日子相比,情绪状态与工作日的活动模式有更强的关系。最后,我们讨论了在实施数字健康“情绪感知”系统时使用这些生物标志物所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Effective Movement Digital Biomarkers for Unobtrusive Emotional State Mobile Monitoring
Mobile sensing technologies and machine learning techniques have been successfully exploited to build effective systems for mental health monitoring and intervention. Various approaches have recently been proposed to effectively exploit contextual information such as mobility, communication and mobile usage patterns for quantifying users' emotional states and wellbeing. In particular, it has been shown that location information collected by means of smartphones can be successfully used to monitor and predict depression levels, as measured by means of standard scores such as PHQ-8. In this paper, we investigate the design of novel digital biomarkers based on the fine-grained characterization of the mobility patterns of a user, also considering the temporal dimension of their movements (e.g., sequence of places visited by them). We show that the proposed biomarkers have a statistically significant association with emotional states. We also demonstrate that emotional states have a stronger relationship with mobility patterns of weekdays compared to all days of a week. Finally, we discuss the challenges in using these biomarkers in the implementation of "emotion-aware" systems for digital health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信