组合拍卖的简化先知不等式

Alexander Braun, Thomas Kesselheim
{"title":"组合拍卖的简化先知不等式","authors":"Alexander Braun, Thomas Kesselheim","doi":"10.48550/arXiv.2211.00707","DOIUrl":null,"url":null,"abstract":"We consider prophet inequalities for XOS and MPH-$k$ combinatorial auctions and give a simplified proof for the existence of static and anonymous item prices which recover the state-of-the-art competitive ratios. Our proofs make use of a linear programming formulation which has a non-negative objective value if there are prices which admit a given competitive ratio $\\alpha \\geq 1$. Changing our perspective to dual space by an application of strong LP duality, we use an interpretation of the dual variables as probabilities to directly obtain our result. In contrast to previous work, our proofs do not require to argue about specific values of buyers for bundles, but only about the presence or absence of items. As a side remark, for any $k \\geq 2$, this simplification also leads to a tiny improvement in the best competitive ratio for MPH-$k$ combinatorial auctions from $4k-2$ to $2k + 2 \\sqrt{k(k-1)} -1$.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"38 1","pages":"381-389"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified Prophet Inequalities for Combinatorial Auctions\",\"authors\":\"Alexander Braun, Thomas Kesselheim\",\"doi\":\"10.48550/arXiv.2211.00707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider prophet inequalities for XOS and MPH-$k$ combinatorial auctions and give a simplified proof for the existence of static and anonymous item prices which recover the state-of-the-art competitive ratios. Our proofs make use of a linear programming formulation which has a non-negative objective value if there are prices which admit a given competitive ratio $\\\\alpha \\\\geq 1$. Changing our perspective to dual space by an application of strong LP duality, we use an interpretation of the dual variables as probabilities to directly obtain our result. In contrast to previous work, our proofs do not require to argue about specific values of buyers for bundles, but only about the presence or absence of items. As a side remark, for any $k \\\\geq 2$, this simplification also leads to a tiny improvement in the best competitive ratio for MPH-$k$ combinatorial auctions from $4k-2$ to $2k + 2 \\\\sqrt{k(k-1)} -1$.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"38 1\",\"pages\":\"381-389\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.00707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.00707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了XOS和MPH- $k$组合拍卖的先知不等式,并给出了静态和匿名物品价格的存在性的简化证明,这些价格可以恢复最先进的竞争比率。我们的证明使用了一个线性规划公式,该公式具有非负的目标值,如果存在允许给定竞争比$\alpha \geq 1$的价格。通过应用强LP对偶性将我们的视角转变为对偶空间,我们使用对偶变量作为概率的解释来直接获得我们的结果。与以前的工作相反,我们的证明不需要争论购买者的特定值,而只需要讨论物品的存在或不存在。作为旁注,对于任何$k \geq 2$,这种简化也导致MPH- $k$组合拍卖的最佳竞争比从$4k-2$到$2k + 2 \sqrt{k(k-1)} -1$的微小改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified Prophet Inequalities for Combinatorial Auctions
We consider prophet inequalities for XOS and MPH-$k$ combinatorial auctions and give a simplified proof for the existence of static and anonymous item prices which recover the state-of-the-art competitive ratios. Our proofs make use of a linear programming formulation which has a non-negative objective value if there are prices which admit a given competitive ratio $\alpha \geq 1$. Changing our perspective to dual space by an application of strong LP duality, we use an interpretation of the dual variables as probabilities to directly obtain our result. In contrast to previous work, our proofs do not require to argue about specific values of buyers for bundles, but only about the presence or absence of items. As a side remark, for any $k \geq 2$, this simplification also leads to a tiny improvement in the best competitive ratio for MPH-$k$ combinatorial auctions from $4k-2$ to $2k + 2 \sqrt{k(k-1)} -1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信