一种可能的偏微分方程理论

R. Jackson
{"title":"一种可能的偏微分方程理论","authors":"R. Jackson","doi":"10.21685/2072-3040-2021-3-3","DOIUrl":null,"url":null,"abstract":"The current gold standard for solving nonlinear partial differential equations, or PDEs, is the simplest equation method, or SEM. As a matter of fact, another prior technique for solving such equations, the G'/G-expansion method, appears to branch from the simplest equation method (SEM). This study discusses a new method for solving PDEs called the generating function technique (GFT) which may establish a new precedence with respect to SEM. First, the study shows how GFT relates to SEM and the G'/G-expansion method. Next, the paper describes a new theorem that incorporates GFT, Ring and Knot theory in the finding of solutions to PDEs. Then the novel technique is applied in the derivation of new solutions to the Benjamin-Ono, QFT and Good Boussinesq equations. Finally, the study concludes via a discourse on the reasons why the technique is likely better than SEM and G'/G-expansion method, the scope and range of what GFT could ultimately accomplish, and the elucidation of a putative new branch of calculus, called \"diversification\".","PeriodicalId":33989,"journal":{"name":"Izvestiia vysshikh uchebnykh zavedenii Povolzhskii region Fizikomatematicheskie nauki","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A possible theory of partial differential equations\",\"authors\":\"R. Jackson\",\"doi\":\"10.21685/2072-3040-2021-3-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current gold standard for solving nonlinear partial differential equations, or PDEs, is the simplest equation method, or SEM. As a matter of fact, another prior technique for solving such equations, the G'/G-expansion method, appears to branch from the simplest equation method (SEM). This study discusses a new method for solving PDEs called the generating function technique (GFT) which may establish a new precedence with respect to SEM. First, the study shows how GFT relates to SEM and the G'/G-expansion method. Next, the paper describes a new theorem that incorporates GFT, Ring and Knot theory in the finding of solutions to PDEs. Then the novel technique is applied in the derivation of new solutions to the Benjamin-Ono, QFT and Good Boussinesq equations. Finally, the study concludes via a discourse on the reasons why the technique is likely better than SEM and G'/G-expansion method, the scope and range of what GFT could ultimately accomplish, and the elucidation of a putative new branch of calculus, called \\\"diversification\\\".\",\"PeriodicalId\":33989,\"journal\":{\"name\":\"Izvestiia vysshikh uchebnykh zavedenii Povolzhskii region Fizikomatematicheskie nauki\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiia vysshikh uchebnykh zavedenii Povolzhskii region Fizikomatematicheskie nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21685/2072-3040-2021-3-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiia vysshikh uchebnykh zavedenii Povolzhskii region Fizikomatematicheskie nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21685/2072-3040-2021-3-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

目前解决非线性偏微分方程(PDEs)的黄金标准是最简单的方程方法(SEM)。事实上,另一种解决此类方程的先前技术,即G'/G展开法,似乎是从最简单方程法(SEM)中衍生出来的。本文讨论了一种求解偏微分方程的新方法,称为生成函数技术(GFT),它可能在扫描电镜方面建立新的优先级。首先,研究表明了GFT与SEM和G′/G展开法的关系。其次,本文描述了一个新的定理,该定理结合了GFT,环和结理论来寻找偏微分方程的解。然后将该方法应用于Benjamin-Ono、QFT和Good Boussinesq方程的新解的推导。最后,该研究通过论述为什么该技术可能比SEM和G'/G展开法更好,GFT最终可以完成的范围和范围,以及对一个假定的微积分新分支的阐明,称为“多样化”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A possible theory of partial differential equations
The current gold standard for solving nonlinear partial differential equations, or PDEs, is the simplest equation method, or SEM. As a matter of fact, another prior technique for solving such equations, the G'/G-expansion method, appears to branch from the simplest equation method (SEM). This study discusses a new method for solving PDEs called the generating function technique (GFT) which may establish a new precedence with respect to SEM. First, the study shows how GFT relates to SEM and the G'/G-expansion method. Next, the paper describes a new theorem that incorporates GFT, Ring and Knot theory in the finding of solutions to PDEs. Then the novel technique is applied in the derivation of new solutions to the Benjamin-Ono, QFT and Good Boussinesq equations. Finally, the study concludes via a discourse on the reasons why the technique is likely better than SEM and G'/G-expansion method, the scope and range of what GFT could ultimately accomplish, and the elucidation of a putative new branch of calculus, called "diversification".
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信