基于非参数模型的MR图像分割

Lu Yi-su, Chen Wu-fan
{"title":"基于非参数模型的MR图像分割","authors":"Lu Yi-su, Chen Wu-fan","doi":"10.1109/BMEI.2011.6098246","DOIUrl":null,"url":null,"abstract":"Nonparametric Dirichlet Process Mixtures (MDP) model algorithm is applied to segment images, which can obtain the segmentation class numbers automatically without initialization. The algorithm is used to segment noisy natural images and magnetic resonance images with biasing field. Compared with classical Markov Field (MRF) segmentation, the nonparametric segmentation results show the greater performance. This method is also analyzed quantitatively on the belly magnetic resonance images. The Dice Similarity Coefficients (DSC) of all slices exceed 93%, which show that the proposed method is robust and accurate.","PeriodicalId":89462,"journal":{"name":"Proceedings of the ... International Conference on Biomedical Engineering and Informatics. International Conference on Biomedical Engineering and Informatics","volume":"34 1","pages":"390-394"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MR image segmentation by nonparametric model\",\"authors\":\"Lu Yi-su, Chen Wu-fan\",\"doi\":\"10.1109/BMEI.2011.6098246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonparametric Dirichlet Process Mixtures (MDP) model algorithm is applied to segment images, which can obtain the segmentation class numbers automatically without initialization. The algorithm is used to segment noisy natural images and magnetic resonance images with biasing field. Compared with classical Markov Field (MRF) segmentation, the nonparametric segmentation results show the greater performance. This method is also analyzed quantitatively on the belly magnetic resonance images. The Dice Similarity Coefficients (DSC) of all slices exceed 93%, which show that the proposed method is robust and accurate.\",\"PeriodicalId\":89462,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Biomedical Engineering and Informatics. International Conference on Biomedical Engineering and Informatics\",\"volume\":\"34 1\",\"pages\":\"390-394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Biomedical Engineering and Informatics. International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2011.6098246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Biomedical Engineering and Informatics. International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2011.6098246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将非参数Dirichlet过程混合(MDP)模型算法应用于分割图像,该算法无需初始化即可自动获得分割类数。该算法用于对有噪声的自然图像和带偏置场的磁共振图像进行分割。与传统的马尔可夫场(MRF)分割相比,非参数分割结果显示出更高的性能。该方法还在腹部磁共振图像上进行了定量分析。所有切片的相似系数(DSC)均超过93%,表明该方法具有较好的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MR image segmentation by nonparametric model
Nonparametric Dirichlet Process Mixtures (MDP) model algorithm is applied to segment images, which can obtain the segmentation class numbers automatically without initialization. The algorithm is used to segment noisy natural images and magnetic resonance images with biasing field. Compared with classical Markov Field (MRF) segmentation, the nonparametric segmentation results show the greater performance. This method is also analyzed quantitatively on the belly magnetic resonance images. The Dice Similarity Coefficients (DSC) of all slices exceed 93%, which show that the proposed method is robust and accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信