利用贝叶斯经验估计、Dirichlet细分和worldviewi数据调整特征空间的秒矩偏差预测特立尼达致倦库蚊栖息地

B. Jacob, D. Chadee, R. Novak
{"title":"利用贝叶斯经验估计、Dirichlet细分和worldviewi数据调整特征空间的秒矩偏差预测特立尼达致倦库蚊栖息地","authors":"B. Jacob, D. Chadee, R. Novak","doi":"10.4236/jgis.2011.31003","DOIUrl":null,"url":null,"abstract":"Temporally weighted regression models with a spatial autoregressive component may estimate nonlinearities in spatiotemporal-sampled data of Culex quinquefasciatus, a major vector of West Nile Virus (WNV) which can help implement control strategies by determining optimal predictors associated to prolific habitats. The design of this kind of mixed model can specifically incorporate spatial autocorrelation whilst including the influence of other aspatial predictor variables. Currently, the lack of an estimation theory that allows for het- eroscedasticity and corresponding joint hypothesis testing in the presence of spatial dependence in georefer- enced Cx. quinquefasciatus habitat data is a serious shortcoming in WNV research. In this paper we used spatially lagged and simultaneous autoregressive models based on multiple predictor variables of immature Cx. quinquefasciatus and Worldview 1 (WV-1) data to help implant a remote habitat-based surveillance sys- tem in Trinidad. Initially, we used Geomatica Ortho Engine® v. 10.2 for extracting a Digital Elevation Model (DEM) from the WV-1 raw imagery. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled Cx. quinquefasciatus data and elevation (m) (R2 = -0.439; p < 0.0001), with a standard deviation of 10.41. Additional field-sampled information was derived using data from an or-thogonal grid-matrix constructed in an ArcInfo 9.3® and overlaid onto the WV-1 data. A unique identifier was placed in the centroid of each grid cell. Univariate statistics and Poisson regression models were then generated using the georeferenced covariates in SAS/GIS®. Coefficient estimates were also used to define expectations for prior distributions in a Bayesian estimation matrix using Markov Chain Monte Carlo (MCMC) specifications. A spatial residual trend analyses was then performed using autocorrelation indices which linked tabular data in SAS PROCLMIXED® with the egg-raft count data in ArcInfo®. The estimation matrix identified prolific habitats based on the covariate distance to the nearest house. An Ordinary kriged-based interpolator was then constructed in Geostatistical Analyst Extension of ArcGIS 9.3® based on the adjusted Bayesian estimates. For total Cx. quinquefasciatus egg-raft count, first order trend was fitted to the semivariogram at a partial sill of 5.931 km, nugget of 6.374 km, lag size of 7.184 km, and a range of 31.02 km using 12 lags. We assessed the performance accuracy of the interpolation procedures based on the magnitude and distribution of errors between observed and model-predicted values using Voroni tessella- tions. These residuals divided the space between the individual georeferenced Cx. quinquefasciatus habitats by XY coordinates in 2-dimenisional space which revealed that the geophysical parameter error residuals in the interpolation model were within normal statistical limitations. Newer GIS software and WV-1 data can generate highly accurate predictive Cx. quinquefasciatus habitat distribution models which can target prolific habitats of based on field-sampled count data. Our results suggest it may be unnecessary to manage all Cx. quinquefasciatus habitats to obtain significant reductions in incidence and prevalence of WNV in Trinidad.","PeriodicalId":93313,"journal":{"name":"Journal of geographic information system","volume":"23 1","pages":"18-49"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adjusting Second Moment Bias in Eigenspace Using Bayesian Empirical Estimators, Dirichlet Tessellations and Worldview I Data for Predicting Culex quinquefasciatus Habitats in Trinidad\",\"authors\":\"B. Jacob, D. Chadee, R. Novak\",\"doi\":\"10.4236/jgis.2011.31003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporally weighted regression models with a spatial autoregressive component may estimate nonlinearities in spatiotemporal-sampled data of Culex quinquefasciatus, a major vector of West Nile Virus (WNV) which can help implement control strategies by determining optimal predictors associated to prolific habitats. The design of this kind of mixed model can specifically incorporate spatial autocorrelation whilst including the influence of other aspatial predictor variables. Currently, the lack of an estimation theory that allows for het- eroscedasticity and corresponding joint hypothesis testing in the presence of spatial dependence in georefer- enced Cx. quinquefasciatus habitat data is a serious shortcoming in WNV research. In this paper we used spatially lagged and simultaneous autoregressive models based on multiple predictor variables of immature Cx. quinquefasciatus and Worldview 1 (WV-1) data to help implant a remote habitat-based surveillance sys- tem in Trinidad. Initially, we used Geomatica Ortho Engine® v. 10.2 for extracting a Digital Elevation Model (DEM) from the WV-1 raw imagery. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled Cx. quinquefasciatus data and elevation (m) (R2 = -0.439; p < 0.0001), with a standard deviation of 10.41. Additional field-sampled information was derived using data from an or-thogonal grid-matrix constructed in an ArcInfo 9.3® and overlaid onto the WV-1 data. A unique identifier was placed in the centroid of each grid cell. Univariate statistics and Poisson regression models were then generated using the georeferenced covariates in SAS/GIS®. Coefficient estimates were also used to define expectations for prior distributions in a Bayesian estimation matrix using Markov Chain Monte Carlo (MCMC) specifications. A spatial residual trend analyses was then performed using autocorrelation indices which linked tabular data in SAS PROCLMIXED® with the egg-raft count data in ArcInfo®. The estimation matrix identified prolific habitats based on the covariate distance to the nearest house. An Ordinary kriged-based interpolator was then constructed in Geostatistical Analyst Extension of ArcGIS 9.3® based on the adjusted Bayesian estimates. For total Cx. quinquefasciatus egg-raft count, first order trend was fitted to the semivariogram at a partial sill of 5.931 km, nugget of 6.374 km, lag size of 7.184 km, and a range of 31.02 km using 12 lags. We assessed the performance accuracy of the interpolation procedures based on the magnitude and distribution of errors between observed and model-predicted values using Voroni tessella- tions. These residuals divided the space between the individual georeferenced Cx. quinquefasciatus habitats by XY coordinates in 2-dimenisional space which revealed that the geophysical parameter error residuals in the interpolation model were within normal statistical limitations. Newer GIS software and WV-1 data can generate highly accurate predictive Cx. quinquefasciatus habitat distribution models which can target prolific habitats of based on field-sampled count data. Our results suggest it may be unnecessary to manage all Cx. quinquefasciatus habitats to obtain significant reductions in incidence and prevalence of WNV in Trinidad.\",\"PeriodicalId\":93313,\"journal\":{\"name\":\"Journal of geographic information system\",\"volume\":\"23 1\",\"pages\":\"18-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of geographic information system\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jgis.2011.31003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geographic information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jgis.2011.31003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

具有空间自回归成分的时间加权回归模型可以估计出西尼罗病毒(WNV)主要媒介致倦库蚊(Culex quinciciatus)时空采样数据的非线性,从而通过确定与繁殖栖息地相关的最佳预测因子,帮助实施控制策略。这种混合模型的设计可以在考虑其他空间预测变量影响的同时,具体地纳入空间自相关。目前,在地理参考Cx存在空间依赖性的情况下,缺乏一种允许热侵蚀性和相应的联合假设检验的估计理论。致倦库蚊栖息地数据是西尼罗河病毒研究的一个严重缺陷。本文采用基于未成熟Cx多预测变量的空间滞后和同步自回归模型。致倦库蚊和世界观1号(WV-1)数据,以帮助在特立尼达建立一个基于栖息地的远程监测系统。最初,我们使用Geomatica Ortho Engine®v. 10.2从WV-1原始图像中提取数字高程模型(DEM)。DEM分析结果表明,总采样Cx和Cx之间存在统计学上显著的反线性关系。致倦库肌数据与海拔高度(m) (R2 = -0.439;P < 0.0001),标准差为10.41。使用ArcInfo 9.3®构建的或正交网格矩阵数据获得额外的油田采样信息,并覆盖到WV-1数据上。在每个网格单元的质心中放置一个唯一的标识符。然后使用SAS/GIS®中的地理参考协变量生成单变量统计和泊松回归模型。利用马尔科夫链蒙特卡罗(MCMC)规范,还使用系数估计来定义贝叶斯估计矩阵中先验分布的期望。然后使用自相关指数将SAS PROCLMIXED®中的表格数据与ArcInfo®中的卵筏计数数据联系起来,进行空间残差趋势分析。该估计矩阵基于到最近房屋的协变量距离来识别多产栖息地。然后在ArcGIS 9.3®Geostatistical Analyst Extension中基于调整后的贝叶斯估计构建了一个普通的基于kriged的插值器。对于总Cx。拟合了致倦库蚊卵群数在5.931 km、6.374 km、7.184 km和31.02 km范围的一级趋势半变异函数。我们利用Voroni tessella评估了基于观测值和模型预测值之间误差的大小和分布的插值程序的性能准确性。这些残差划分了各个地理参考Cx之间的空间。结果表明,插值模型的地球物理参数误差残差在正态统计范围内。较新的GIS软件和WV-1数据可以生成高度准确的预测Cx。基于野外采样计数数据的致倦库蚊栖息地分布模型。我们的结果表明,可能没有必要管理所有的Cx。在特立尼达显著降低西尼罗河病毒的发病率和流行率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjusting Second Moment Bias in Eigenspace Using Bayesian Empirical Estimators, Dirichlet Tessellations and Worldview I Data for Predicting Culex quinquefasciatus Habitats in Trinidad
Temporally weighted regression models with a spatial autoregressive component may estimate nonlinearities in spatiotemporal-sampled data of Culex quinquefasciatus, a major vector of West Nile Virus (WNV) which can help implement control strategies by determining optimal predictors associated to prolific habitats. The design of this kind of mixed model can specifically incorporate spatial autocorrelation whilst including the influence of other aspatial predictor variables. Currently, the lack of an estimation theory that allows for het- eroscedasticity and corresponding joint hypothesis testing in the presence of spatial dependence in georefer- enced Cx. quinquefasciatus habitat data is a serious shortcoming in WNV research. In this paper we used spatially lagged and simultaneous autoregressive models based on multiple predictor variables of immature Cx. quinquefasciatus and Worldview 1 (WV-1) data to help implant a remote habitat-based surveillance sys- tem in Trinidad. Initially, we used Geomatica Ortho Engine® v. 10.2 for extracting a Digital Elevation Model (DEM) from the WV-1 raw imagery. Results of the DEM analyses indicated a statistically significant inverse linear relationship between total sampled Cx. quinquefasciatus data and elevation (m) (R2 = -0.439; p < 0.0001), with a standard deviation of 10.41. Additional field-sampled information was derived using data from an or-thogonal grid-matrix constructed in an ArcInfo 9.3® and overlaid onto the WV-1 data. A unique identifier was placed in the centroid of each grid cell. Univariate statistics and Poisson regression models were then generated using the georeferenced covariates in SAS/GIS®. Coefficient estimates were also used to define expectations for prior distributions in a Bayesian estimation matrix using Markov Chain Monte Carlo (MCMC) specifications. A spatial residual trend analyses was then performed using autocorrelation indices which linked tabular data in SAS PROCLMIXED® with the egg-raft count data in ArcInfo®. The estimation matrix identified prolific habitats based on the covariate distance to the nearest house. An Ordinary kriged-based interpolator was then constructed in Geostatistical Analyst Extension of ArcGIS 9.3® based on the adjusted Bayesian estimates. For total Cx. quinquefasciatus egg-raft count, first order trend was fitted to the semivariogram at a partial sill of 5.931 km, nugget of 6.374 km, lag size of 7.184 km, and a range of 31.02 km using 12 lags. We assessed the performance accuracy of the interpolation procedures based on the magnitude and distribution of errors between observed and model-predicted values using Voroni tessella- tions. These residuals divided the space between the individual georeferenced Cx. quinquefasciatus habitats by XY coordinates in 2-dimenisional space which revealed that the geophysical parameter error residuals in the interpolation model were within normal statistical limitations. Newer GIS software and WV-1 data can generate highly accurate predictive Cx. quinquefasciatus habitat distribution models which can target prolific habitats of based on field-sampled count data. Our results suggest it may be unnecessary to manage all Cx. quinquefasciatus habitats to obtain significant reductions in incidence and prevalence of WNV in Trinidad.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信