P. Khodashenas, A. Betzler, Javier Garcia Lloreda, Elisa Jimeno, Irena Trajkovska, Luca Del Vecchio, A. Whitehead
{"title":"确保在支持云计算的多租户RAN环境中的服务质量","authors":"P. Khodashenas, A. Betzler, Javier Garcia Lloreda, Elisa Jimeno, Irena Trajkovska, Luca Del Vecchio, A. Whitehead","doi":"10.1109/EuCNC.2017.7980658","DOIUrl":null,"url":null,"abstract":"To meet the communication expectations of the future, mobile networks need to evolve quicker than ever toward systems with ultra-low latency, huge traffic volume and higher data rates. Cloud-enabled radio systems have been introduced as a promising solution to meet these demands with the help of network functions virtualization techniques and network edge processing capabilities, which allow for increased resource pooling, scalability, layer interworking and spectral efficiency. Despite their potential benefits, joint radio-cloud systems pose technical challenges on the network management and orchestration, especially on ensuring the Quality of Service (QoS). To this end, having a complete loop of monitoring, decision-making and reaction is essential. However, considering the fact that the radio and the cloud parameters are inherently disparate, forming such a loop in a joint radio-cloud environment is very challenging. This challenge becomes more difficult in multi-tenant (operator) scenarios, targeted by 5G, where ensuring the QoS for one tenant should not violate the QoS of the others. This paper intends to state the problem from a 5GPPP H2020 perspective, and discusses a possible solution within the context of the SESAME project.","PeriodicalId":6626,"journal":{"name":"2017 European Conference on Networks and Communications (EuCNC)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ensuring Quality of Service in a multi-tenant cloud-enabled RAN environment\",\"authors\":\"P. Khodashenas, A. Betzler, Javier Garcia Lloreda, Elisa Jimeno, Irena Trajkovska, Luca Del Vecchio, A. Whitehead\",\"doi\":\"10.1109/EuCNC.2017.7980658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the communication expectations of the future, mobile networks need to evolve quicker than ever toward systems with ultra-low latency, huge traffic volume and higher data rates. Cloud-enabled radio systems have been introduced as a promising solution to meet these demands with the help of network functions virtualization techniques and network edge processing capabilities, which allow for increased resource pooling, scalability, layer interworking and spectral efficiency. Despite their potential benefits, joint radio-cloud systems pose technical challenges on the network management and orchestration, especially on ensuring the Quality of Service (QoS). To this end, having a complete loop of monitoring, decision-making and reaction is essential. However, considering the fact that the radio and the cloud parameters are inherently disparate, forming such a loop in a joint radio-cloud environment is very challenging. This challenge becomes more difficult in multi-tenant (operator) scenarios, targeted by 5G, where ensuring the QoS for one tenant should not violate the QoS of the others. This paper intends to state the problem from a 5GPPP H2020 perspective, and discusses a possible solution within the context of the SESAME project.\",\"PeriodicalId\":6626,\"journal\":{\"name\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 European Conference on Networks and Communications (EuCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC.2017.7980658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 European Conference on Networks and Communications (EuCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EuCNC.2017.7980658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensuring Quality of Service in a multi-tenant cloud-enabled RAN environment
To meet the communication expectations of the future, mobile networks need to evolve quicker than ever toward systems with ultra-low latency, huge traffic volume and higher data rates. Cloud-enabled radio systems have been introduced as a promising solution to meet these demands with the help of network functions virtualization techniques and network edge processing capabilities, which allow for increased resource pooling, scalability, layer interworking and spectral efficiency. Despite their potential benefits, joint radio-cloud systems pose technical challenges on the network management and orchestration, especially on ensuring the Quality of Service (QoS). To this end, having a complete loop of monitoring, decision-making and reaction is essential. However, considering the fact that the radio and the cloud parameters are inherently disparate, forming such a loop in a joint radio-cloud environment is very challenging. This challenge becomes more difficult in multi-tenant (operator) scenarios, targeted by 5G, where ensuring the QoS for one tenant should not violate the QoS of the others. This paper intends to state the problem from a 5GPPP H2020 perspective, and discusses a possible solution within the context of the SESAME project.