关于杜杰拉唯一猜想的注解

Pub Date : 2023-06-30 DOI:10.3336/gm.58.1.04
M. Le, A. Srinivasan
{"title":"关于杜杰拉唯一猜想的注解","authors":"M. Le, A. Srinivasan","doi":"10.3336/gm.58.1.04","DOIUrl":null,"url":null,"abstract":"Using properties of binary quadratic Diophantine equations, we prove that if \\(r=p^{m} q^{n}\\), where \\(p, q\\) are distinct odd primes and \\(m, n\\) are positive integers, then the equation \\(x^{2}-\\left(r^{2}+1\\right) y^{2}=r^{2}\\) has at most one positive integer solution \\((x, y)\\) with \\(y \\lt r-1\\).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on Dujella's unicity conjecture\",\"authors\":\"M. Le, A. Srinivasan\",\"doi\":\"10.3336/gm.58.1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using properties of binary quadratic Diophantine equations, we prove that if \\\\(r=p^{m} q^{n}\\\\), where \\\\(p, q\\\\) are distinct odd primes and \\\\(m, n\\\\) are positive integers, then the equation \\\\(x^{2}-\\\\left(r^{2}+1\\\\right) y^{2}=r^{2}\\\\) has at most one positive integer solution \\\\((x, y)\\\\) with \\\\(y \\\\lt r-1\\\\).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.58.1.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.58.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用二元二次丢芬图方程的性质,证明了如果\(r=p^{m} q^{n}\),其中\(p, q\)为异奇素数,\(m, n\)为正整数,则方程\(x^{2}-\left(r^{2}+1\right) y^{2}=r^{2}\)最多有一个含有\(y \lt r-1\)的正整数解\((x, y)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on Dujella's unicity conjecture
Using properties of binary quadratic Diophantine equations, we prove that if \(r=p^{m} q^{n}\), where \(p, q\) are distinct odd primes and \(m, n\) are positive integers, then the equation \(x^{2}-\left(r^{2}+1\right) y^{2}=r^{2}\) has at most one positive integer solution \((x, y)\) with \(y \lt r-1\).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信