流处理系统参数自动调优的研究

Muhammad Bilal, M. Canini
{"title":"流处理系统参数自动调优的研究","authors":"Muhammad Bilal, M. Canini","doi":"10.1145/3127479.3127492","DOIUrl":null,"url":null,"abstract":"Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Towards automatic parameter tuning of stream processing systems\",\"authors\":\"Muhammad Bilal, M. Canini\",\"doi\":\"10.1145/3127479.3127492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.\",\"PeriodicalId\":20679,\"journal\":{\"name\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3127479.3127492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3127492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

优化大数据流应用程序的性能已经成为一项艰巨而耗时的任务:参数可能会从数百甚至数千种可能的配置中进行调整。在本文中,我们提出了一个流处理系统参数自动调优的框架。我们的框架支持标准的黑盒优化算法以及一种新颖的灰盒优化算法。通过优化Apache Storm中的三个基准应用程序,我们展示了自动参数调优的多重好处。结果表明,采用基于拉丁超立方体的启发式采样方法的爬坡算法具有最佳的爬坡效果。我们的灰盒算法提供了类似的结果,同时速度快了2到5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards automatic parameter tuning of stream processing systems
Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信