{"title":"扭曲规范场","authors":"J. Franccois","doi":"10.4310/ATMP.2021.v25.n6.a2","DOIUrl":null,"url":null,"abstract":"We propose a generalisation of the notion of associated bundles to a principal bundle constructed via group action cocycles rather than via mere representations of the structure group. We devise a notion of connection generalising Ehresmann connection on principal bundles, giving rise to the appropriate covariant derivative on sections of these twisted associated bundles (and on twisted tensorial forms). We study the action of the group of vertical automorphisms on the objects introduced (active gauge transformations). We also provide the gluing properties of the local representatives (passive gauge transformations). The latter are generalised gauge fields: They satisfy the gauge principle of physics, but are of a different geometric nature than standard Yang-Mills fields. We also examine the conditions under which this new geometry coexists and mixes with the standard one. We show that (standard) conformal tractors and Penrose's twistors can be seen as simple instances of this general picture. We also indicate that the twisted geometry arises naturally in the definition and study of anomalies in quantum gauge field theory.","PeriodicalId":50848,"journal":{"name":"Advances in Theoretical and Mathematical Physics","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Twisted gauge fields\",\"authors\":\"J. Franccois\",\"doi\":\"10.4310/ATMP.2021.v25.n6.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a generalisation of the notion of associated bundles to a principal bundle constructed via group action cocycles rather than via mere representations of the structure group. We devise a notion of connection generalising Ehresmann connection on principal bundles, giving rise to the appropriate covariant derivative on sections of these twisted associated bundles (and on twisted tensorial forms). We study the action of the group of vertical automorphisms on the objects introduced (active gauge transformations). We also provide the gluing properties of the local representatives (passive gauge transformations). The latter are generalised gauge fields: They satisfy the gauge principle of physics, but are of a different geometric nature than standard Yang-Mills fields. We also examine the conditions under which this new geometry coexists and mixes with the standard one. We show that (standard) conformal tractors and Penrose's twistors can be seen as simple instances of this general picture. We also indicate that the twisted geometry arises naturally in the definition and study of anomalies in quantum gauge field theory.\",\"PeriodicalId\":50848,\"journal\":{\"name\":\"Advances in Theoretical and Mathematical Physics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.4310/ATMP.2021.v25.n6.a2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4310/ATMP.2021.v25.n6.a2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We propose a generalisation of the notion of associated bundles to a principal bundle constructed via group action cocycles rather than via mere representations of the structure group. We devise a notion of connection generalising Ehresmann connection on principal bundles, giving rise to the appropriate covariant derivative on sections of these twisted associated bundles (and on twisted tensorial forms). We study the action of the group of vertical automorphisms on the objects introduced (active gauge transformations). We also provide the gluing properties of the local representatives (passive gauge transformations). The latter are generalised gauge fields: They satisfy the gauge principle of physics, but are of a different geometric nature than standard Yang-Mills fields. We also examine the conditions under which this new geometry coexists and mixes with the standard one. We show that (standard) conformal tractors and Penrose's twistors can be seen as simple instances of this general picture. We also indicate that the twisted geometry arises naturally in the definition and study of anomalies in quantum gauge field theory.
期刊介绍:
Advances in Theoretical and Mathematical Physics is a bimonthly publication of the International Press, publishing papers on all areas in which theoretical physics and mathematics interact with each other.