弱内角谷和强内无环映射的延拓定理

D. O’Regan
{"title":"弱内角谷和强内无环映射的延拓定理","authors":"D. O’Regan","doi":"10.22436/jnsa.015.03.03","DOIUrl":null,"url":null,"abstract":"In this paper we begin by presenting a general Leray-Schauder alternative and a topological transversality theorem for Kakutani (upper semicontinuous maps with nonempty convex compact values) compact weakly inward maps. Then with some observations and extra assumptions we present a Leray-Schauder alternative and a topological transversality theorem for acyclic (upper semicontinuous maps with nonempty acyclic compact values) compact strongly inward maps.","PeriodicalId":48799,"journal":{"name":"Journal of Nonlinear Sciences and Applications","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuation theorems for weakly inward Kakutani and Strongly inward acyclic maps\",\"authors\":\"D. O’Regan\",\"doi\":\"10.22436/jnsa.015.03.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we begin by presenting a general Leray-Schauder alternative and a topological transversality theorem for Kakutani (upper semicontinuous maps with nonempty convex compact values) compact weakly inward maps. Then with some observations and extra assumptions we present a Leray-Schauder alternative and a topological transversality theorem for acyclic (upper semicontinuous maps with nonempty acyclic compact values) compact strongly inward maps.\",\"PeriodicalId\":48799,\"journal\":{\"name\":\"Journal of Nonlinear Sciences and Applications\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/jnsa.015.03.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.015.03.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先给出了Kakutani(具有非空凸紧值的上半连续映射)紧弱内向映射的一般Leray-Schauder替代定理和拓扑横截定理。在此基础上,我们给出了非空非环紧值上半连续映射的Leray-Schauder替代定理和拓扑截性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuation theorems for weakly inward Kakutani and Strongly inward acyclic maps
In this paper we begin by presenting a general Leray-Schauder alternative and a topological transversality theorem for Kakutani (upper semicontinuous maps with nonempty convex compact values) compact weakly inward maps. Then with some observations and extra assumptions we present a Leray-Schauder alternative and a topological transversality theorem for acyclic (upper semicontinuous maps with nonempty acyclic compact values) compact strongly inward maps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonlinear Sciences and Applications
Journal of Nonlinear Sciences and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
11
期刊介绍: The Journal of Nonlinear Science and Applications (JNSA) (print: ISSN 2008-1898 online: ISSN 2008-1901) is an international journal which provides very fast publication of original research papers in the fields of nonlinear analysis. Journal of Nonlinear Science and Applications is a journal that aims to unite and stimulate mathematical research community. It publishes original research papers and survey articles on all areas of nonlinear analysis and theoretical applied nonlinear analysis. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics. Manuscripts are invited from academicians, research students, and scientists for publication consideration. Papers are accepted for editorial consideration through online submission with the understanding that they have not been published, submitted or accepted for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信