{"title":"蛋白合成抑制增强胶质母细胞瘤细胞亲环蛋白抑制诱导的旁细胞性死亡","authors":"Lin Wang, Justin H. Gundelach, R. Bram","doi":"10.14800/CCM.1601","DOIUrl":null,"url":null,"abstract":"Treatment of cancer is frequently unsuccessful related to the loss of apoptotic signaling in malignant cells. This is a particular problem for high-grade gliomas, such as Glioblastoma Multiforme (GBM), which are almost universally fatal within a year or so of diagnosis. Novel therapies that capitalize on non-apoptotic cell death pathways may yield more effective outcomes, if their underlying mechanisms can be more completely deciphered. In a recent publication (ref 10), the mechanisms by which cellular cyclophilins support GBM cell survival have been identified. Inhibition of cyclophilins activated paraptosis, which relied on a combination of endoplasmic reticulum (ER) stress and transient activation of autophagy. An important aspect of this effect was the relative rates of cap-dependent versus cap-independent protein synthesis, which were differentially modulated by protein synthesis inhibitors or mTOR inhibition. Although cycloheximide has previously been characterized as an inhibitor of paraptosis, in the case of cyclophilin inhibition, it appears to significantly enhance stress-related paraptosis and cell death. This work reveals an important role for cap-independent protein translation and autophagy in the ability of GBM cells to resist non-apoptotic death, and adds to our understanding of the events that underlie paraptosis.","PeriodicalId":9576,"journal":{"name":"Cancer cell & microenvironment","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Protein synthesis inhibition enhances paraptotic death induced by inhibition of cyclophilins in glioblastoma cells\",\"authors\":\"Lin Wang, Justin H. Gundelach, R. Bram\",\"doi\":\"10.14800/CCM.1601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Treatment of cancer is frequently unsuccessful related to the loss of apoptotic signaling in malignant cells. This is a particular problem for high-grade gliomas, such as Glioblastoma Multiforme (GBM), which are almost universally fatal within a year or so of diagnosis. Novel therapies that capitalize on non-apoptotic cell death pathways may yield more effective outcomes, if their underlying mechanisms can be more completely deciphered. In a recent publication (ref 10), the mechanisms by which cellular cyclophilins support GBM cell survival have been identified. Inhibition of cyclophilins activated paraptosis, which relied on a combination of endoplasmic reticulum (ER) stress and transient activation of autophagy. An important aspect of this effect was the relative rates of cap-dependent versus cap-independent protein synthesis, which were differentially modulated by protein synthesis inhibitors or mTOR inhibition. Although cycloheximide has previously been characterized as an inhibitor of paraptosis, in the case of cyclophilin inhibition, it appears to significantly enhance stress-related paraptosis and cell death. This work reveals an important role for cap-independent protein translation and autophagy in the ability of GBM cells to resist non-apoptotic death, and adds to our understanding of the events that underlie paraptosis.\",\"PeriodicalId\":9576,\"journal\":{\"name\":\"Cancer cell & microenvironment\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer cell & microenvironment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/CCM.1601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer cell & microenvironment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/CCM.1601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protein synthesis inhibition enhances paraptotic death induced by inhibition of cyclophilins in glioblastoma cells
Treatment of cancer is frequently unsuccessful related to the loss of apoptotic signaling in malignant cells. This is a particular problem for high-grade gliomas, such as Glioblastoma Multiforme (GBM), which are almost universally fatal within a year or so of diagnosis. Novel therapies that capitalize on non-apoptotic cell death pathways may yield more effective outcomes, if their underlying mechanisms can be more completely deciphered. In a recent publication (ref 10), the mechanisms by which cellular cyclophilins support GBM cell survival have been identified. Inhibition of cyclophilins activated paraptosis, which relied on a combination of endoplasmic reticulum (ER) stress and transient activation of autophagy. An important aspect of this effect was the relative rates of cap-dependent versus cap-independent protein synthesis, which were differentially modulated by protein synthesis inhibitors or mTOR inhibition. Although cycloheximide has previously been characterized as an inhibitor of paraptosis, in the case of cyclophilin inhibition, it appears to significantly enhance stress-related paraptosis and cell death. This work reveals an important role for cap-independent protein translation and autophagy in the ability of GBM cells to resist non-apoptotic death, and adds to our understanding of the events that underlie paraptosis.