Mansoureh Rasouli, M. A. Fariborzi Araghi, T. Damercheli
{"title":"求解操作风险中偏积分-微分方程的近似技术:Adomian分解法","authors":"Mansoureh Rasouli, M. A. Fariborzi Araghi, T. Damercheli","doi":"10.1007/s40096-021-00438-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":48563,"journal":{"name":"Mathematical Sciences","volume":"21 1","pages":"43 - 49"},"PeriodicalIF":1.9000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate techniques to solve the partial integro-differential equation arising in operational risk: Adomian decomposition method\",\"authors\":\"Mansoureh Rasouli, M. A. Fariborzi Araghi, T. Damercheli\",\"doi\":\"10.1007/s40096-021-00438-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":48563,\"journal\":{\"name\":\"Mathematical Sciences\",\"volume\":\"21 1\",\"pages\":\"43 - 49\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40096-021-00438-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40096-021-00438-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Mathematical Sciences is an international journal publishing high quality peer-reviewed original research articles that demonstrate the interaction between various disciplines of theoretical and applied mathematics. Subject areas include numerical analysis, numerical statistics, optimization, operational research, signal analysis, wavelets, image processing, fuzzy sets, spline, stochastic analysis, integral equation, differential equation, partial differential equation and combinations of the above.