基于相似度分析的轨迹异常检测

Gerardo Torres, Germain Garcia Zanabria, H. V. Olivera, Lauro Enciso-Rodas
{"title":"基于相似度分析的轨迹异常检测","authors":"Gerardo Torres, Germain Garcia Zanabria, H. V. Olivera, Lauro Enciso-Rodas","doi":"10.1109/CLEI53233.2021.9639966","DOIUrl":null,"url":null,"abstract":"Automatic trajectory processing has multiple applications, mainly due to the wide availability of the data. Trajectory data have a significant practical value, making possible the modeling of various problems such as surveillance and tracking devices, detect anomaly trajectories, identifying illegal and adverse activity. In this study, we show a comparative analysis of the performance of two descriptors to detect anomaly trajectories. We define Wavelet and Fourier transforms as trajectory descriptors to generate characteristics and subsequently detect anomalies. The experiments emphasize performance in the description in the coefficient feature space. For that, we used unsupervised learning, specifically clustering techniques, to generate subsets and identify which are irregular. The implications of the study demonstrate that it is possible to use descriptors in trajectories for automatic anomaly detection and the use of unsupervised learning methods that automatically segment the required information. The performance and comparative analysis of our study are demonstrated through experiments and a case study considering synthetic and real data sets that leave evidence of our contribution.","PeriodicalId":6803,"journal":{"name":"2021 XLVII Latin American Computing Conference (CLEI)","volume":"34 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Trajectory Anomaly Detection based on Similarity Analysis\",\"authors\":\"Gerardo Torres, Germain Garcia Zanabria, H. V. Olivera, Lauro Enciso-Rodas\",\"doi\":\"10.1109/CLEI53233.2021.9639966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic trajectory processing has multiple applications, mainly due to the wide availability of the data. Trajectory data have a significant practical value, making possible the modeling of various problems such as surveillance and tracking devices, detect anomaly trajectories, identifying illegal and adverse activity. In this study, we show a comparative analysis of the performance of two descriptors to detect anomaly trajectories. We define Wavelet and Fourier transforms as trajectory descriptors to generate characteristics and subsequently detect anomalies. The experiments emphasize performance in the description in the coefficient feature space. For that, we used unsupervised learning, specifically clustering techniques, to generate subsets and identify which are irregular. The implications of the study demonstrate that it is possible to use descriptors in trajectories for automatic anomaly detection and the use of unsupervised learning methods that automatically segment the required information. The performance and comparative analysis of our study are demonstrated through experiments and a case study considering synthetic and real data sets that leave evidence of our contribution.\",\"PeriodicalId\":6803,\"journal\":{\"name\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"volume\":\"34 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XLVII Latin American Computing Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI53233.2021.9639966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XLVII Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI53233.2021.9639966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自动轨迹处理具有多种应用,主要是由于数据的广泛可用性。轨迹数据具有重要的实用价值,可以对监视和跟踪设备等各种问题进行建模,检测异常轨迹,识别非法和不利活动。在本研究中,我们对两种描述符检测异常轨迹的性能进行了比较分析。我们将小波变换和傅立叶变换定义为轨迹描述符,以生成特征并随后检测异常。实验强调在系数特征空间的描述性能。为此,我们使用无监督学习,特别是聚类技术,来生成子集并识别哪些是不规则的。该研究的意义表明,在轨迹中使用描述符进行自动异常检测和使用无监督学习方法自动分割所需信息是可能的。我们的研究的性能和比较分析是通过实验和一个案例研究来证明的,考虑了合成和真实的数据集,留下了我们贡献的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Anomaly Detection based on Similarity Analysis
Automatic trajectory processing has multiple applications, mainly due to the wide availability of the data. Trajectory data have a significant practical value, making possible the modeling of various problems such as surveillance and tracking devices, detect anomaly trajectories, identifying illegal and adverse activity. In this study, we show a comparative analysis of the performance of two descriptors to detect anomaly trajectories. We define Wavelet and Fourier transforms as trajectory descriptors to generate characteristics and subsequently detect anomalies. The experiments emphasize performance in the description in the coefficient feature space. For that, we used unsupervised learning, specifically clustering techniques, to generate subsets and identify which are irregular. The implications of the study demonstrate that it is possible to use descriptors in trajectories for automatic anomaly detection and the use of unsupervised learning methods that automatically segment the required information. The performance and comparative analysis of our study are demonstrated through experiments and a case study considering synthetic and real data sets that leave evidence of our contribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信