{"title":"脑电时频表征的深度学习用于眼状态识别","authors":"Dharmendra Gurve, S. Krishnan","doi":"10.1142/S2424922X18400065","DOIUrl":null,"url":null,"abstract":"A new Convolutional Neural Network (CNN) architecture to classify nonstationary biomedical signals using their time–frequency representations is proposed. The present method uses the spectrogram of...","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"36 1","pages":"1840006:1-1840006:13"},"PeriodicalIF":0.9000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Deep Learning of EEG Time-Frequency Representations for Identifying Eye States\",\"authors\":\"Dharmendra Gurve, S. Krishnan\",\"doi\":\"10.1142/S2424922X18400065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new Convolutional Neural Network (CNN) architecture to classify nonstationary biomedical signals using their time–frequency representations is proposed. The present method uses the spectrogram of...\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"36 1\",\"pages\":\"1840006:1-1840006:13\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X18400065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X18400065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Deep Learning of EEG Time-Frequency Representations for Identifying Eye States
A new Convolutional Neural Network (CNN) architecture to classify nonstationary biomedical signals using their time–frequency representations is proposed. The present method uses the spectrogram of...