{"title":"有限连通图上平衡湍流和Toda系统的平均场方程","authors":"Xiao-Dan Zhu","doi":"10.4208/jpde.v35.n3.1","DOIUrl":null,"url":null,"abstract":". In this paper, we study existence of solutions of mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs. Our method is based on calculus of variations, which was built on connected finite graphs by Grigor’yan, Lin and Yang.","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"28 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Mean Field Equations for the Equilibrium Turbulence and Toda Systems on Connected Finite Graphs\",\"authors\":\"Xiao-Dan Zhu\",\"doi\":\"10.4208/jpde.v35.n3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we study existence of solutions of mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs. Our method is based on calculus of variations, which was built on connected finite graphs by Grigor’yan, Lin and Yang.\",\"PeriodicalId\":43504,\"journal\":{\"name\":\"Journal of Partial Differential Equations\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/jpde.v35.n3.1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/jpde.v35.n3.1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Mean Field Equations for the Equilibrium Turbulence and Toda Systems on Connected Finite Graphs
. In this paper, we study existence of solutions of mean field equations for the equilibrium turbulence and Toda systems on connected finite graphs. Our method is based on calculus of variations, which was built on connected finite graphs by Grigor’yan, Lin and Yang.