用过参数化加速矩阵分解

Pu Chen, Hung-Hsuan Chen
{"title":"用过参数化加速矩阵分解","authors":"Pu Chen, Hung-Hsuan Chen","doi":"10.5220/0009885600890097","DOIUrl":null,"url":null,"abstract":": This paper studies overparameterization on the matrix factorization (MF) model. We confirm that overparameterization can significantly accelerate the optimization of MF with no change in the expressiveness of the learning model. Consequently, modern applications on recommendations based on MF or its variants can largely benefit from our discovery. Specifically, we theoretically derive that applying the vanilla stochastic gradient descent (SGD) on the overparameterized MF model is equivalent to employing gradient descent with momentum and adaptive learning rate on the standard MF model. We empirically compare the overparameterized MF model with the standard MF model based on various optimizers, including vanilla SGD, AdaGrad, Adadelta, RMSprop, and Adam, using several public datasets. The experimental results comply with our analysis – overparameterization converges faster. The overparameterization technique can be applied to various learning-based recommendation models, including deep learning-based recommendation models, e.g., SVD++, nonnegative matrix factorization (NMF), factorization machine (FM), NeuralCF, Wide&Deep, and DeepFM. Therefore, we suggest utilizing the overparameterization technique to accelerate the training speed for the learning-based recommendation models whenever possible, especially when the size of the training dataset is large.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"20 1","pages":"89-97"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Accelerating Matrix Factorization by Overparameterization\",\"authors\":\"Pu Chen, Hung-Hsuan Chen\",\"doi\":\"10.5220/0009885600890097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper studies overparameterization on the matrix factorization (MF) model. We confirm that overparameterization can significantly accelerate the optimization of MF with no change in the expressiveness of the learning model. Consequently, modern applications on recommendations based on MF or its variants can largely benefit from our discovery. Specifically, we theoretically derive that applying the vanilla stochastic gradient descent (SGD) on the overparameterized MF model is equivalent to employing gradient descent with momentum and adaptive learning rate on the standard MF model. We empirically compare the overparameterized MF model with the standard MF model based on various optimizers, including vanilla SGD, AdaGrad, Adadelta, RMSprop, and Adam, using several public datasets. The experimental results comply with our analysis – overparameterization converges faster. The overparameterization technique can be applied to various learning-based recommendation models, including deep learning-based recommendation models, e.g., SVD++, nonnegative matrix factorization (NMF), factorization machine (FM), NeuralCF, Wide&Deep, and DeepFM. Therefore, we suggest utilizing the overparameterization technique to accelerate the training speed for the learning-based recommendation models whenever possible, especially when the size of the training dataset is large.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"20 1\",\"pages\":\"89-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0009885600890097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009885600890097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了矩阵分解模型的过参数化问题。我们证实,过度参数化可以显著加速MF的优化,而学习模型的表达能力没有变化。因此,基于MF或其变体的推荐的现代应用可以很大程度上受益于我们的发现。具体来说,我们从理论上推导出在过参数化MF模型上应用香草随机梯度下降(SGD)相当于在标准MF模型上使用带动量和自适应学习率的梯度下降。我们使用几个公共数据集,将过度参数化MF模型与基于各种优化器(包括vanilla SGD、AdaGrad、Adadelta、RMSprop和Adam)的标准MF模型进行了经验比较。实验结果与我们的分析一致——过参数化的收敛速度更快。过参数化技术可以应用于各种基于学习的推荐模型,包括基于深度学习的推荐模型,如SVD++、非负矩阵分解(NMF)、因子分解机(FM)、NeuralCF、Wide&Deep和DeepFM。因此,我们建议尽可能利用过参数化技术来加快基于学习的推荐模型的训练速度,特别是在训练数据集规模较大的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating Matrix Factorization by Overparameterization
: This paper studies overparameterization on the matrix factorization (MF) model. We confirm that overparameterization can significantly accelerate the optimization of MF with no change in the expressiveness of the learning model. Consequently, modern applications on recommendations based on MF or its variants can largely benefit from our discovery. Specifically, we theoretically derive that applying the vanilla stochastic gradient descent (SGD) on the overparameterized MF model is equivalent to employing gradient descent with momentum and adaptive learning rate on the standard MF model. We empirically compare the overparameterized MF model with the standard MF model based on various optimizers, including vanilla SGD, AdaGrad, Adadelta, RMSprop, and Adam, using several public datasets. The experimental results comply with our analysis – overparameterization converges faster. The overparameterization technique can be applied to various learning-based recommendation models, including deep learning-based recommendation models, e.g., SVD++, nonnegative matrix factorization (NMF), factorization machine (FM), NeuralCF, Wide&Deep, and DeepFM. Therefore, we suggest utilizing the overparameterization technique to accelerate the training speed for the learning-based recommendation models whenever possible, especially when the size of the training dataset is large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信