当标量曲率非负时,限定不变谱

Stuart J. Hall, T. Murphy
{"title":"当标量曲率非负时,限定不变谱","authors":"Stuart J. Hall, T. Murphy","doi":"10.1090/conm/756/15202","DOIUrl":null,"url":null,"abstract":"On compact Riemannian manifolds with a large isometry group we investigate the invariant spectrum of the ordinary Laplacian. For either a toric Kaehler metric, or a rotationally-symmetric metric on the sphere, we produce upper bounds for all eigenvalues of the invariant spectrum assuming non-negative scalar curvature.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bounding the invariant spectrum when the\\n scalar curvature is non-negative\",\"authors\":\"Stuart J. Hall, T. Murphy\",\"doi\":\"10.1090/conm/756/15202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On compact Riemannian manifolds with a large isometry group we investigate the invariant spectrum of the ordinary Laplacian. For either a toric Kaehler metric, or a rotationally-symmetric metric on the sphere, we produce upper bounds for all eigenvalues of the invariant spectrum assuming non-negative scalar curvature.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/756/15202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/756/15202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在具有大等距群的紧黎曼流形上,研究了普通拉普拉斯算子的不变谱。对于球面上的环形Kaehler度规或旋转对称度规,我们给出了假设非负标量曲率的不变谱的所有特征值的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding the invariant spectrum when the scalar curvature is non-negative
On compact Riemannian manifolds with a large isometry group we investigate the invariant spectrum of the ordinary Laplacian. For either a toric Kaehler metric, or a rotationally-symmetric metric on the sphere, we produce upper bounds for all eigenvalues of the invariant spectrum assuming non-negative scalar curvature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信