广义Hermite矩阵多项式的新扩展

IF 0.3 Q4 MATHEMATICS
A. Shehata
{"title":"广义Hermite矩阵多项式的新扩展","authors":"A. Shehata","doi":"10.12697/ACUTM.2018.22.17","DOIUrl":null,"url":null,"abstract":"Various families of generating matrix functions have been established in diverse ways. The objective of the present paper is to investigate these generalized Hermite matrix polynomials, and derive some important results for them, such as, the generating matrix functions, matrix recurrence relations, an expansion of xnI, finite summation formulas, addition theorems, integral representations, fractional calculus operators, and certain other implicit summation formulae.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On new extensions of the generalized Hermite matrix polynomials\",\"authors\":\"A. Shehata\",\"doi\":\"10.12697/ACUTM.2018.22.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various families of generating matrix functions have been established in diverse ways. The objective of the present paper is to investigate these generalized Hermite matrix polynomials, and derive some important results for them, such as, the generating matrix functions, matrix recurrence relations, an expansion of xnI, finite summation formulas, addition theorems, integral representations, fractional calculus operators, and certain other implicit summation formulae.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/ACUTM.2018.22.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/ACUTM.2018.22.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

各种生成矩阵函数的族已经以不同的方式建立起来。本文的目的是研究这些广义Hermite矩阵多项式,并得到它们的一些重要结果,如:生成矩阵函数、矩阵递推关系、xnI的展开式、有限求和公式、加法定理、积分表示、分数阶微积分算子和其他一些隐式求和公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On new extensions of the generalized Hermite matrix polynomials
Various families of generating matrix functions have been established in diverse ways. The objective of the present paper is to investigate these generalized Hermite matrix polynomials, and derive some important results for them, such as, the generating matrix functions, matrix recurrence relations, an expansion of xnI, finite summation formulas, addition theorems, integral representations, fractional calculus operators, and certain other implicit summation formulae.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信