{"title":"用于高迁移率光子/电全调制突触晶体管的共轭聚合物包裹单壁碳纳米管","authors":"Maina Moses Mburu, Kuan‐Ting Lu, Nathaniel Prine, Ai-Nhan Au-Duong, Wei‐Hung Chiang, X. Gu, Y. Chiu","doi":"10.1002/admt.202101506","DOIUrl":null,"url":null,"abstract":"Although synaptic devices have already demonstrated their operability through electric or photonic signals or a combination thereof, current challenges include developing a single hardware synaptic device that is independently fully operational through either photonic or electric signals to improve device versatility. Additionally, most previously reported devices are fabricated using multiple technical processes—which impede device implementation—while the low‐output current triggered in most such devices limits the possible integration of auxiliary gadgets. Therefore, by spontaneously wrapping a conjugated block copolymer around single‐walled carbon nanotubes (SWCNTs), a thin‐film transistor memory device comprising single‐layered poly(9,9‐dioctylfluorene)‐b‐polyisoprene (PF‐b‐PI)‐wrapped‐SWCNTs—which function as both a semiconductor and an electret layer—to simplify the device structure and fabrication is designed. Owing to the robust SWCNT charge carrier mobility (≈11.3 cm2 V−1 s−1), a high output current (10−4 to 10−3 A) can be achieved and because PF is a photoactive conjugated polymer, the photonic signal can also be modulated. The designed memory device independently exhibits both voltage‐ and light‐controllable switching, thereby mimicking biological synaptic behavior such as short‐ and long‐term plasticity, spike‐time, and spike‐rate‐dependent plasticity. This study may provide a suitable basis for developing more‐convenient, economical, highly versatile synaptic devices.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Conjugated Polymer‐Wrapped Single‐Wall Carbon Nanotubes for High‐Mobility Photonic/Electrical Fully Modulated Synaptic Transistor\",\"authors\":\"Maina Moses Mburu, Kuan‐Ting Lu, Nathaniel Prine, Ai-Nhan Au-Duong, Wei‐Hung Chiang, X. Gu, Y. Chiu\",\"doi\":\"10.1002/admt.202101506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although synaptic devices have already demonstrated their operability through electric or photonic signals or a combination thereof, current challenges include developing a single hardware synaptic device that is independently fully operational through either photonic or electric signals to improve device versatility. Additionally, most previously reported devices are fabricated using multiple technical processes—which impede device implementation—while the low‐output current triggered in most such devices limits the possible integration of auxiliary gadgets. Therefore, by spontaneously wrapping a conjugated block copolymer around single‐walled carbon nanotubes (SWCNTs), a thin‐film transistor memory device comprising single‐layered poly(9,9‐dioctylfluorene)‐b‐polyisoprene (PF‐b‐PI)‐wrapped‐SWCNTs—which function as both a semiconductor and an electret layer—to simplify the device structure and fabrication is designed. Owing to the robust SWCNT charge carrier mobility (≈11.3 cm2 V−1 s−1), a high output current (10−4 to 10−3 A) can be achieved and because PF is a photoactive conjugated polymer, the photonic signal can also be modulated. The designed memory device independently exhibits both voltage‐ and light‐controllable switching, thereby mimicking biological synaptic behavior such as short‐ and long‐term plasticity, spike‐time, and spike‐rate‐dependent plasticity. This study may provide a suitable basis for developing more‐convenient, economical, highly versatile synaptic devices.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202101506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202101506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
摘要
虽然突触器件已经证明了它们通过电子或光子信号或它们的组合可操作性,但目前的挑战包括开发一个单独的硬件突触器件,它可以通过光子或电信号独立地完全运行,以提高器件的通用性。此外,大多数先前报道的设备都是使用多种技术工艺制造的,这阻碍了设备的实现,而大多数此类设备中触发的低输出电流限制了辅助设备集成的可能性。因此,通过在单壁碳纳米管(SWCNTs)周围自发包裹共轭嵌段共聚物,设计了一种薄膜晶体管存储器件,该器件由单层聚(9,9 -二辛基芴)- b -聚异戊二烯(PF - b - PI) -包裹的SWCNTs组成,可同时用作半导体和驻极体层,以简化器件结构和制造。由于强大的swcnts载流子迁移率(≈11.3 cm2 V−1 s−1),可以实现高输出电流(10−4至10−3 a),并且由于PF是光活性共轭聚合物,光子信号也可以被调制。所设计的记忆器件独立显示电压和光可控开关,从而模仿生物突触行为,如短期和长期可塑性,峰值时间和峰值速率依赖的可塑性。这项研究为开发更方便、经济、高通用性的突触装置提供了良好的基础。
Although synaptic devices have already demonstrated their operability through electric or photonic signals or a combination thereof, current challenges include developing a single hardware synaptic device that is independently fully operational through either photonic or electric signals to improve device versatility. Additionally, most previously reported devices are fabricated using multiple technical processes—which impede device implementation—while the low‐output current triggered in most such devices limits the possible integration of auxiliary gadgets. Therefore, by spontaneously wrapping a conjugated block copolymer around single‐walled carbon nanotubes (SWCNTs), a thin‐film transistor memory device comprising single‐layered poly(9,9‐dioctylfluorene)‐b‐polyisoprene (PF‐b‐PI)‐wrapped‐SWCNTs—which function as both a semiconductor and an electret layer—to simplify the device structure and fabrication is designed. Owing to the robust SWCNT charge carrier mobility (≈11.3 cm2 V−1 s−1), a high output current (10−4 to 10−3 A) can be achieved and because PF is a photoactive conjugated polymer, the photonic signal can also be modulated. The designed memory device independently exhibits both voltage‐ and light‐controllable switching, thereby mimicking biological synaptic behavior such as short‐ and long‐term plasticity, spike‐time, and spike‐rate‐dependent plasticity. This study may provide a suitable basis for developing more‐convenient, economical, highly versatile synaptic devices.