Abhilash C. Basavaraju, K. Mahesh, Nihar Sanda
求助PDF
{"title":"利用BERT模型实现基于本体的语义数据兴趣","authors":"Abhilash C. Basavaraju, K. Mahesh, Nihar Sanda","doi":"10.1080/09540091.2023.2190499","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has generated massive data in the healthcare sector in recent years, encouraging researchers and scientists to uncover the underlying facts. Mining interesting patterns in the large COVID-19 corpora is very important and useful for the decision makers. This paper presents a novel approach for uncovering interesting insights in large datasets using ontologies and BERT models. The research proposes a framework for extracting semantically rich facts from data by incorporating domain knowledge into the data mining process through the use of ontologies. An improved Apriori algorithm is employed for mining semantic association rules, while the interestingness of the rules is evaluated using BERT models for semantic richness. The results of the proposed framework are compared with state-of-the-art methods and evaluated using a combination of domain expert evaluation and statistical significance testing. The study offers a promising solution for finding meaningful relationships and facts in large datasets, particularly in the healthcare sector. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":"5 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ontology-based semantic data interestingness using BERT models\",\"authors\":\"Abhilash C. Basavaraju, K. Mahesh, Nihar Sanda\",\"doi\":\"10.1080/09540091.2023.2190499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic has generated massive data in the healthcare sector in recent years, encouraging researchers and scientists to uncover the underlying facts. Mining interesting patterns in the large COVID-19 corpora is very important and useful for the decision makers. This paper presents a novel approach for uncovering interesting insights in large datasets using ontologies and BERT models. The research proposes a framework for extracting semantically rich facts from data by incorporating domain knowledge into the data mining process through the use of ontologies. An improved Apriori algorithm is employed for mining semantic association rules, while the interestingness of the rules is evaluated using BERT models for semantic richness. The results of the proposed framework are compared with state-of-the-art methods and evaluated using a combination of domain expert evaluation and statistical significance testing. The study offers a promising solution for finding meaningful relationships and facts in large datasets, particularly in the healthcare sector. © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.\",\"PeriodicalId\":50629,\"journal\":{\"name\":\"Connection Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connection Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09540091.2023.2190499\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2190499","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
引用
批量引用