快速容量增长和容量估算的几何含义

Tim Jaschek, M. Murugan
{"title":"快速容量增长和容量估算的几何含义","authors":"Tim Jaschek, M. Murugan","doi":"10.1515/9783110700763-007","DOIUrl":null,"url":null,"abstract":"We obtain connectivity of annuli for a volume doubling metric measure Dirichlet space which satisfies a Poincare inequality, a capacity estimate and a fast volume growth condition. This type of connectivity was introduced by Grigor'yan and Saloff-Coste in order to obtain stability results for Harnack inequalities and to study diffusions on manifolds with ends. As an application of our result, we obtain stability of the elliptic Harnack inequality under perturbations of the Dirichlet form with radial type weights.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric implications of fast volume growth and capacity estimates\",\"authors\":\"Tim Jaschek, M. Murugan\",\"doi\":\"10.1515/9783110700763-007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain connectivity of annuli for a volume doubling metric measure Dirichlet space which satisfies a Poincare inequality, a capacity estimate and a fast volume growth condition. This type of connectivity was introduced by Grigor'yan and Saloff-Coste in order to obtain stability results for Harnack inequalities and to study diffusions on manifolds with ends. As an application of our result, we obtain stability of the elliptic Harnack inequality under perturbations of the Dirichlet form with radial type weights.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/9783110700763-007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783110700763-007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于满足庞加莱不等式、容量估计和快速体积增长条件的体积倍增度量测度Dirichlet空间,我们得到了环空的连通性。这种连通性是由Grigor'yan和Saloff-Coste引入的,目的是为了得到Harnack不等式的稳定性结果和研究端形流形上的扩散。作为结果的一个应用,我们得到了椭圆型哈纳克不等式在具有径向型权的Dirichlet形式摄动下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric implications of fast volume growth and capacity estimates
We obtain connectivity of annuli for a volume doubling metric measure Dirichlet space which satisfies a Poincare inequality, a capacity estimate and a fast volume growth condition. This type of connectivity was introduced by Grigor'yan and Saloff-Coste in order to obtain stability results for Harnack inequalities and to study diffusions on manifolds with ends. As an application of our result, we obtain stability of the elliptic Harnack inequality under perturbations of the Dirichlet form with radial type weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信